A110439 Triangular array formed by the odd-indexed Fibonacci numbers.
1, 1, 1, 3, 2, 1, 8, 5, 3, 1, 21, 14, 8, 4, 1, 55, 38, 23, 12, 5, 1, 144, 102, 65, 36, 17, 6, 1, 377, 273, 180, 106, 54, 23, 7, 1, 987, 728, 494, 304, 166, 78, 30, 8, 1, 2584, 1936, 1346, 858, 494, 251, 109, 38, 9, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 3, 2, 1; 8, 5, 3, 1; 21, 14, 8, 4, 1;
References
- A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55.
- A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107.
- A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC 1997.
Links
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
Crossrefs
Cf. A097724.
Formula
Riordan array: ((1-2z+z^2)/(1-3z+z^2), ((1-z+z^2)-sqrt(1-2z-z^2-2z^3+z^4))/2z), R(n, k). Recurrence: R(n+1, 0) = 2R(n, 0) + Sum_{j>=1} R(n-j, 0), leftmost column. For other columns: R(n+1, k) = R(n, k-1) + R(n, k) + Sum_{j>=1} R(n-j, k+j).
Comments