cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110488 A number triangle based on the Catalan numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 10, 4, 1, 42, 42, 35, 17, 5, 1, 132, 132, 126, 74, 26, 6, 1, 429, 429, 462, 326, 137, 37, 7, 1, 1430, 1430, 1716, 1446, 726, 230, 50, 8, 1, 4862, 4862, 6435, 6441, 3858, 1434, 359, 65, 9, 1, 16796, 16796, 24310, 28770, 20532, 8952, 2582, 530, 82, 10, 1
Offset: 0

Views

Author

Paul Barry, Jul 22 2005

Keywords

Comments

Columns include A000108, A001700, A049027(n+1), A076025(n+1). Rows sums are A110489, diagonal sums are A110490.

Examples

			Rows begin
   1;
   1,  1;
   2,  2,  1;
   5,  5,  3,  1;
  14, 14, 10,  4,  1;
  42, 42, 35, 17,  5,  1;
		

Programs

  • Mathematica
    T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 28 2017 *)

Formula

T(n, k) = Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/(n-k+j+2).
Column k has g.f. x^k*c(x)/(1-k*x*c(x)) where c(x) is the g.f. of A000108.
T(n,0) = Catalan(n), T(n,1) = Catalan(n), T(n,n) = 1. - G. C. Greubel, Aug 28 2017