A110490 Diagonal sums of a triangle based on the Catalan numbers.
1, 1, 3, 7, 20, 59, 185, 600, 2003, 6833, 23727, 83606, 298313, 1076155, 3920823, 14416987, 53482012, 200151737, 755894009, 2882782933, 11115015138, 43400057683, 172016505877, 694208585423, 2863726993748, 12130698802645
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..675
Crossrefs
Cf. A110488.
Programs
-
Mathematica
T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Join[{1, 1}, Table[Sum[T[n - k, k], {k, 0, n}], {n,2,50}]] (* G. C. Greubel, Aug 29 2017 *)
Formula
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..(n-2*k)} 2*(j+1)*(k-1)^j*C(2*(n-2*k)+1, n-2*k-j)/(n-2*k+j+2).
Comments