A110504 Triangle, read by rows, which equals the matrix logarithm of the triangle A110503.
0, 1, 0, 3, -1, 0, 7, -3, 1, 0, 30, -7, 3, -1, 0, 144, -30, 7, -3, 1, 0, 876, -144, 30, -7, 3, -1, 0, 6084, -876, 144, -30, 7, -3, 1, 0, 48816, -6084, 876, -144, 30, -7, 3, -1, 0, 438624, -48816, 6084, -876, 144, -30, 7, -3, 1, 0, 4389120, -438624, 48816, -6084, 876, -144, 30, -7, 3, -1, 0
Offset: 0
Examples
Triangle begins: 0; 1/1!, 0; 3/2!, -1/1!, 0; 7/3!, -3/2!, 1/1!, 0; 30/4!, -7/3!, 3/2!, -1/1!, 0; 144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0; 876/6!, -144/5!, 30/4!, -7/3!, 3/2!, -1/1!, 0; 6084/7!, -876/6!, 144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0; ... Unsigned columns all equal A110505. Exponential function of matrix equals A110503: 1; 1,1; 1,-1,1; 1,-2,1,1; 1,-1,1,-1,1; 1,-1,1,-2,1,1; 1,-1,1,-1,1,-1,1; 1,-1,1,-1,1,-2,1,1; ...
Programs
-
PARI
T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))); sum(i=1,#M,-(M^0-M)^i/i)[n+1,k+1]
Formula
T(n, k) = (-1)^k*A110505(n-k).
Comments