A110515 Sequence array for (1 - x + x^2 + x^3)/(1 - x^4).
1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1
Offset: 0
Examples
Rows begin 1; -1, 1; 1, -1, 1; 1, 1, -1, 1; 1, 1, 1, -1, 1; -1, 1, 1, 1, -1, 1; 1, -1, 1, 1, 1,- 1, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
Table[If[k <= n, -Sin[Pi*(n - k)/2] + Cos[Pi*(n - k)]/2 + 1/2, 0], {n,0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 29 2017 *)
-
PARI
for(n=0,20, for(k=0,n, print1(round(if(k<=n, -sin(Pi*(n-k)/2) + cos(Pi*(n-k))/2 + 1/2, 0)), ", "))) \\ G. C. Greubel, Aug 29 2017
Formula
Riordan array ((1 - x + x^2 + x^3)/(1 - x^4), 1).
Column k has g.f. x^k*(1 - x + x^2 + x^3)/(1 - x^4).
T(n, k) = if(k <= n, -sin(Pi*(n-k)/2) + cos(Pi*(n-k))/2 + 1/2, 0).
T(n, k) = if(k <= n, Jacobi(2^(n-k), 2(n-k)+1), 0) [conjecture].
Comments