A110518 Riordan array (1, x*c(3x)), c(x) the g.f. of A000108.
1, 0, 1, 0, 3, 1, 0, 18, 6, 1, 0, 135, 45, 9, 1, 0, 1134, 378, 81, 12, 1, 0, 10206, 3402, 756, 126, 15, 1, 0, 96228, 32076, 7290, 1296, 180, 18, 1, 0, 938223, 312741, 72171, 13365, 2025, 243, 21, 1, 0, 9382230, 3127410, 729729, 138996, 22275, 2970, 315, 24, 1, 0
Offset: 0
Examples
Rows begin 1; 0, 1; 0, 3, 1; 0, 18, 6, 1; 0, 135, 45, 9, 1; 0, 1134, 378, 81, 12, 1; ... Production matrix begins: 0, 1; 0, 3, 1; 0, 9, 3, 1; 0, 27, 9, 3, 1; 0, 81, 27, 9, 3, 1; 0, 243, 81, 27, 9, 3, 1; ... - _Philippe Deléham_, Sep 23 2014
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := (k/n)*3^(n - k)*Binomial[2*n - k - 1, n - k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
-
PARI
concat([1], for(n=1,10, for(k=0,n, print1((k/n)*3^(n-k)*binomial(2*n-k-1,n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017
Formula
Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*3^(n-k), n > 0, k > 0.
T(n,k) = A106566(n,k)*3^(n-k). - Philippe Deléham, Nov 08 2007
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 3, 3, 3, 3, 3, 3, 3, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014
Comments