A110519 Riordan array (1/(1-x*c(3*x)), x*c(3*x)/(1-x*c(3*x))), c(x) the g.f. of A000108.
1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 190, 256, 78, 13, 1, 1606, 2186, 703, 139, 17, 1, 14506, 19863, 6591, 1430, 216, 21, 1, 137089, 188449, 63813, 14669, 2501, 309, 25, 1, 1338790, 1845416, 633808, 151532, 27940, 3980, 418, 29, 1, 13403950, 18513822, 6425196, 1580316, 307752, 48180, 5931, 543, 33, 1
Offset: 0
Examples
Rows begin 1; 1, 1; 4, 5, 1; 25, 33, 9, 1; 190, 256, 78, 13, 1; 1606, 2186, 703, 139, 17, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := Sum[j*3^(n - j)*Binomial[2*n - j - 1, n - j]*Binomial[j, k]/n, {j, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
-
PARI
concat([1], for(n=1, 10, for(k=0,n, print1(sum(j=0,n, j*binomial(2*n-j-1,n-j)*binomial(j,k)*3^(n-j)/n), ", ")))) \\ G. C. Greubel, Aug 29 2017
Formula
Number triangle T(0,k) = 0^k, T(n,k) = Sum_{j=0..n} j*C(2n-j-1, n-j)* C(j, k)3^(n-j)/n, n > 0, k > 0. Deleham triangle Delta(0^n, 3-2*0^n) [see construction in A084938].
Comments