cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110519 Riordan array (1/(1-x*c(3*x)), x*c(3*x)/(1-x*c(3*x))), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 190, 256, 78, 13, 1, 1606, 2186, 703, 139, 17, 1, 14506, 19863, 6591, 1430, 216, 21, 1, 137089, 188449, 63813, 14669, 2501, 309, 25, 1, 1338790, 1845416, 633808, 151532, 27940, 3980, 418, 29, 1, 13403950, 18513822, 6425196, 1580316, 307752, 48180, 5931, 543, 33, 1
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Product of (1, x*c(3*x)) and (1/(1-x), x/(1-x)) (A110518 and A007318). The binomial transform of the inverse of this triangle has general element (-3)^(n-k)*C(k,n-k), that is, it is the Riordan array (1, x*(1-3*x)) [A110517]. Row sums are A110520. Diagonal sums are A110521.

Examples

			Rows begin
     1;
     1,    1;
     4,    5,    1;
    25,   33,    9,    1;
   190,  256,   78,   13,    1;
  1606, 2186,  703,  139,   17,    1;
		

Programs

  • Mathematica
    T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := Sum[j*3^(n - j)*Binomial[2*n - j - 1, n - j]*Binomial[j, k]/n, {j, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    concat([1], for(n=1, 10, for(k=0,n, print1(sum(j=0,n, j*binomial(2*n-j-1,n-j)*binomial(j,k)*3^(n-j)/n), ", ")))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle T(0,k) = 0^k, T(n,k) = Sum_{j=0..n} j*C(2n-j-1, n-j)* C(j, k)3^(n-j)/n, n > 0, k > 0. Deleham triangle Delta(0^n, 3-2*0^n) [see construction in A084938].