cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110541 A number triangle of sums of binomial products.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 7, 4, 1, 1, 1, 8, 19, 13, 5, 1, 1, 1, 13, 51, 46, 21, 6, 1, 1, 1, 21, 141, 166, 89, 31, 7, 1, 1, 1, 34, 393, 610, 393, 151, 43, 8, 1, 1, 1, 55, 1107, 2269, 1761, 776, 235, 57, 9, 1, 1, 1, 89, 3139, 8518, 7985, 4056, 1363, 344, 73, 10, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 25 2005

Keywords

Comments

Columns include A000045, A002426, A026641. Rows include A000012, A000027, A002061(n+1). Row sums are A110542.

Examples

			Rows begin
  1;
  1,   1;
  1,   1,   1;
  1,   2,   1,   1;
  1,   3,   3,   1,   1;
  1,   5,   7,   4,   1,   1;
  1,   8,  19,  13,   5,   1,   1;
  1,  13,  51,  46,  21,   6,   1,   1;
  1,  21, 141, 166,  89,  31,   7,   1,   1;
As a number square read by antidiagonals, rows begin
  1,   1,   1,   1,   1,   1, ...
  1,   1,   1,   1,   1,   1, ...
  1,   2,   3,   4,   5,   6, ...
  1,   3,   7,  13,  21,  31, ...
  1,   5,  19,  46,  89, 151, ...
  1,   8,  51, 166, 393, 776, ...
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j) )))); # G. C. Greubel, Feb 19 2019
  • Magma
    [[(&+[Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    T[n_, k_] := Sum[Binomial[(k-1)*(n-k) - (k-2)*j, j]*Binomial[j, n-k-j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
  • PARI
    for(n=0,20, for(k=0,n, print1(sum(j=0,n-k, binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j)), ", "))) \\ G. C. Greubel, Aug 31 2017
    
  • Sage
    [[sum(binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
    

Formula

T(n,k) = Sum_{j=0..n-k} C((k-1)*(n-k)-(k-2)*j, j)*C(j, n-k-j).