cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110549 Period 8: repeat [1, 2, 4, 3, 3, 4, 2, 1].

Original entry on oeis.org

1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1
Offset: 0

Views

Author

Paul Barry, Jul 26 2005

Keywords

Comments

Permutation of {1,2,3,4} followed by its reversal, repeated.
Continued fraction expansion of (337 + sqrt(905669))/890 = 1.44793981253727... - R. J. Mathar, Mar 08 2012

Crossrefs

One more than A105198.

Programs

Formula

G.f.: (1 + x + 3*x^2 + 3*x^4 + x^5 + x^6)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7). [corrected by Georg Fischer, May 15 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 5/2.
a(n) = 1 + A105198(n).
a(n) = 1 + (A000217(n) mod 4). - Jon E. Schoenfield, Aug 11 2017