A110618 Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts.
1, 0, 1, 1, 3, 3, 7, 8, 15, 18, 30, 37, 58, 71, 105, 131, 186, 230, 318, 393, 530, 653, 863, 1060, 1380, 1686, 2164, 2637, 3345, 4057, 5096, 6158, 7665, 9228, 11395, 13671, 16765, 20040, 24418, 29098, 35251, 41869, 50460, 59755, 71669, 84626, 101050
Offset: 0
Keywords
Examples
a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2. a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6. From _Gus Wiseman_, Oct 30 2018: (Start) The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2: (11) (111) (22) (221) (33) (322) (44) (211) (2111) (222) (331) (332) (1111) (11111) (321) (2221) (422) (2211) (3211) (431) (3111) (22111) (2222) (21111) (31111) (3221) (111111) (211111) (3311) (1111111) (4211) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts: (2) (3) (4) (5) (6) (7) (8) (22) (32) (33) (43) (44) (31) (41) (42) (52) (53) (51) (61) (62) (222) (322) (71) (321) (331) (332) (411) (421) (422) (511) (431) (521) (611) (2222) (3221) (3311) (4211) (5111) The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition): (33): {{1,2},{1,2},{1,2}} (321): {{1,2},{1,2},{1,3}} (3111): {{1,2},{1,3},{1,4}} (222): {{1,2,3},{1,2,3}} (2211): {{1,2},{1,2,3,4}} (21111): {{1,2},{1,3,4,5}} (111111): {{1,2,3,4,5,6}} (End)
Crossrefs
Programs
-
Maple
A000070 := proc(n) add( combinat[numbpart](i),i=0..n) ; end proc: A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011
-
Mathematica
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; multhyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1]&]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[n],multhyp[#]!={}&]],{n,8}] (* Gus Wiseman, Oct 30 2018 *)
-
PARI
a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018
Comments