cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A089574 Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).

Original entry on oeis.org

5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
Offset: 1

Views

Author

Alford Arnold, Dec 29 2003; extended May 04 2005

Keywords

Comments

The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]

Examples

			The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
		

Crossrefs

Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

Row sums are powers of 2.
a(n) = A000330(n) + A006011(n+1) + A034263(n-1).
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]

Extensions

Extended beyond a(8) by R. J. Mathar, Jun 26 2010

A108538 Column 10 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

1, 64, 731, 4553, 20155, 71272, 214653, 572743, 1389702, 3122752, 6585183, 13162741, 25131718, 46115029, 81722067, 140429357, 234772177, 382932581, 610826859, 954815625, 1465182669, 2210554686, 3283463257, 4807283267, 6944818576, 9908846494, 13974977743, 19497238421, 26926835328
Offset: 0

Views

Author

Alford Arnold, Jul 05 2005

Keywords

Comments

A109820 can be decomposed into 30 sequences. These 30 associated sequences can be inferred from the 30 ways of partitioning the number nine: 9 81 72 63 54 ... the complete listing is available in the Handbook of Mathematical Functions (1964) p. 831. Consider, for example, the three ways of partitioning the number three: 3, 21 and 111; prepend each partition then add one to each value - yielding 44, 332 and 2222. These "associated" partitions are then used to derive the associated sequences. 44 => A000330, 332 => A006011 and 2222 => A034263. Summing these three sequences yields A089574.

Examples

			a(1) = 1 because the only associated partition 4444 for n = 16 cannot be permuted.
a(2) = 64 because the associated partitions can be permuted in 3 + 4 + 12 + 9 + 20 + 10 + 6 ways when n = 17.
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13)

Formula

G.f. 1+64*x -x^2*(-731 +4219*x -13765*x^2 +30910*x^3 -49804*x^4 +58458*x^5 -50237*x^6 +31394*x^7 -13931*x^8 +4171*x^9 -757*x^10 +63*x^11)/(x-1)^12 . - R. J. Mathar, Aug 28 2018

Extensions

Extended by R. J. Mathar, Aug 28 2018

A109820 Column 9 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

6, 126, 992, 4921, 18450, 57198, 154420, 375106, 838075, 1749221, 3449895, 6485363, 11699374, 20362113, 34340211, 56319046, 90089305, 140911696, 215975810, 324971445, 480793226, 700402096, 1005870222, 1425639066, 1996023823, 2763001135, 3784320961, 5131987727, 6895160406, 9183525995, 12131205973
Offset: 0

Views

Author

Alford Arnold, Jul 03 2005

Keywords

Examples

			The associated sequences begin for n = 15 through 19:
........................1.......5
........................3.......18
................3.......18......60
........3.......18......60......150
1.......7.......25......65......140
........................6.......42
................12......84......324
........12......84......324.....924
........6.......42......162.....462
4.......32......132.....392.....952
........................10......80
................30......240.....1050
........10......90......420.....1400
........30......240.....1050....3360
1.......11......56......196.....546
........................15......135
................60......540.....2640
........15......165.....900.....3420
........................21......210
................35......385.....2205
........................28......308
........................1.......19
therefore this sequence begins
6 126 992 4921 18450
		

Crossrefs

Cf. A109126.
Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

G.f. 6 -x*( 126 -394*x +939*x^2 -1911*x^3 +2803*x^4 -2825*x^5 +1964*x^6 -939*x^7 +298*x^8 -57*x^9 +5*x^10)/(x-1)^11 . - R. J. Mathar, Aug 28 2018

Extensions

More terms with the program of A105552 from R. J. Mathar, Aug 28 2018

A109821 Column 11 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

27, 482, 3855, 20329, 82346, 277295, 813738, 2145712, 5192450, 11708366, 24881487, 50269005, 97217758, 180966915, 325691821, 568823951, 967074547, 1604701323, 2604691419, 4143692621, 6471712062, 9937820779, 15023357512, 22384420182, 32905773076, 47768686720
Offset: 0

Views

Author

Alford Arnold, Jul 18 2005

Keywords

Examples

			An examination of the relevant ordered Gaussian polynomials reveals the following distribution (beginning with partitions of length three):
1 10 15 1
6 52 180 216 28
12 114 530 1386 1547 266
18 168 880 3086 7007 7616 1554
therefore (by summing each row) this sequence begins
27
482
3855
20329
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Programs

  • Mathematica
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1}, {27,482, 3855,20329,82346,277295,813738,2145712,5192450,11708366,24881487, 50269005, 97217758,180966915,325691821}, 1001] (* Georg Fischer, Feb 28 2019 *)

Formula

G.f.: 27 + 482*x -x^2*(3855 -29786*x +118759*x^2 -310071*x^3 +574122*x^4 -780978*x^5 +792535*x^6 -601009*x^7 +336759*x^8 -135622*x^9 +37194*x^10 -6228*x^11 +481*x^12) /(x-1)^13. - R. J. Mathar, Aug 28 2018

Extensions

More terms from R. J. Mathar, Aug 28 2018

A110553 Column 12 of an array illustrated in A089584 and related to A034261.

Original entry on oeis.org

9, 284, 3004, 19078, 88938, 335612, 1084387, 3109060, 8104089, 19539904, 44141520, 94346102, 192252586, 375787005, 708083995, 1291443529, 2287680232, 3947261426, 6650353141, 10963787826, 17719064134, 28117822582, 43872849975, 67394593662, 102035462287, 152406906280
Offset: 0

Views

Author

Alford Arnold, Jul 29 2005

Keywords

Comments

The column sequences can also be calculated using sequences which map to associated partitions. For example, 4 32 132 392 ... maps to 5+5+5+4 (n=19) and sequence 5 50 245 840 ... maps to 4+4+4+4+3. Many partitions map to the same sequences since the mapping depends only on the "degree" of the partition. In the above two cases, the degrees are 31 and 41 respectively. At n = 20 the relevant degrees are: 21,31,211,311,22,221,42,212,321,24 and 61. The associated partitions can be permuted with the number of ways as indicated: 3 4 12 20 6 30 15 30 60 15 and 7 ways. Adding these values with the 32 and 50 ways from our first two sequences confirms that A110553(2) = 284.

Examples

			An examination of the relevant ordered Gaussian polynomials reveals the following distributions:
5 4
7 120 120 34 3
112 1127 1190 470 96 9
882 6692 7147 3270 910 162 15
therefore the sequence begins
9
284
3004
19078
...
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Programs

  • Mathematica
    LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1}, {9, 284, 3004,19078, 88938, 335612, 1084387, 3109060, 8104089,19539904, 44141520, 94346102, 192252586, 375787005, 708083995, 1291443529, 2287680232}, 1001] (* Georg Fischer, Feb 28 2019 *)

Formula

G.f.: 9+284*x+3004*x^2 -x^3*(-19078 +178154*x -826578*x^2 +2465215*x^3 -5191980*x^4 +8073520*x^5 -9475220*x^6 +8461596*x^7 -5732830*x^8 +2904174*x^9 -1067563*x^10 +269335*x^11 -41760*x^12 +3003*x^13) /(x-1)^14. - R. J. Mathar, Aug 28 2018

Extensions

More terms from R. J. Mathar, Aug 28 2018

A109126 Column 8 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

18, 207, 1198, 4825, 15448, 42168, 102297, 226530, 466357, 904352, 1668083, 2948502, 5023797, 8289819, 13298336, 20804513, 31825172, 47709549, 70224436, 101655775, 144928958, 203750282, 282772211, 387785308, 525939919, 706000918, 938639057, 1236762708, 1615894035, 2094593893
Offset: 0

Views

Author

Alford Arnold, Jun 22 2005

Keywords

Examples

			The associated partitions begin (for n = 14, 15, 16, ...
................1.......5.......14
................3.......18......60
........3.......18......60......150
3.......18......60......150.....315
................6.......42......162
........12......84......324.....924
4.......32......132.....392.....952
6.......42......162.....462.....1092
................10......80......350
........30......240.....1050....3360
5.......50......245.....840.....2310
................15......135.....660
........20......200.....1040....3840
................21......210.....1134
................1.......17......125
therefore this sequence begins
18 207 1198 4825 15448 ...
		

Crossrefs

Cf. A105552, A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

G.f. ( 18+27*x -62*x^2 +48*x^4 -13*x^5 -27*x^6 +24*x^7 -8*x^8 +x^9 ) / (x-1)^10 . - R. J. Mathar, Aug 28 2018

Extensions

More terms with the program of A105552 from R. J. Mathar, Aug 28 2018

A110554 Column 11 of table A105552.

Original entry on oeis.org

56, 285, 954, 2366, 4711, 7936, 11712, 15448, 18450, 20155, 20329, 19078, 16746, 13780, 10644, 7712, 5235, 3325, 1970, 1081, 544, 247, 99, 33, 8, 1
Offset: 1

Views

Author

Alford Arnold, Jul 30 2005

Keywords

Comments

A105552 is constructed by summing values from ordered Gaussian polynomials, therefore the present begins with one value each from the following diagonal sequences and sums to A047970(11).

Examples

			a(6) = A107601(6) = 7936.
		

Crossrefs

Showing 1-7 of 7 results.