A110633 Every third term of A083946 where the self-convolution third power is congruent modulo 9 to A083946, which consists entirely of numbers 1 through 6.
1, 2, 6, 4, 6, 4, 3, 2, 6, 4, 2, 6, 6, 4, 4, 2, 4, 2, 6, 4, 3, 4, 2, 6, 1, 4, 2, 2, 3, 4, 1, 6, 6, 2, 6, 6, 1, 6, 2, 6, 6, 2, 4, 6, 2, 4, 4, 4, 2, 6, 6, 2, 2, 6, 4, 4, 2, 6, 6, 4, 5, 4, 2, 6, 2, 4, 1, 2, 5, 2, 3, 4, 6, 6, 6, 6, 2, 4, 5, 2, 3, 2, 1, 2, 4, 2, 5, 2, 4, 2, 6, 2, 2, 4, 4, 4, 3, 2, 1, 2, 6, 6, 2, 6, 3
Offset: 0
Keywords
Examples
A(x) = 1 + 2*x + 6*x^2 + 4*x^3 + 6*x^4 + 4*x^5 + 3*x^6 + ... A(x)^3 = 1 + 6*x + 30*x^2 + 92*x^3 + 246*x^4 + 492*x^5 + ... A(x)^3 (mod 9) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 + ... G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 + ... where G(x) is the g.f. of A083946.
Programs
-
PARI
{a(n)=local(d=3,m=6,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,d*n)}