cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110640 Every third term of A083949 where the self-convolution third power is congruent modulo 27 to A083949, which consists entirely of numbers 1 through 9.

Original entry on oeis.org

1, 3, 3, 1, 6, 6, 9, 6, 6, 9, 3, 3, 2, 6, 6, 7, 9, 9, 5, 9, 9, 3, 6, 6, 5, 9, 9, 3, 9, 9, 1, 6, 6, 7, 6, 6, 3, 9, 9, 5, 3, 3, 5, 9, 9, 9, 9, 9, 9, 6, 6, 2, 9, 9, 8, 3, 3, 3, 3, 3, 1, 3, 3, 7, 9, 9, 1, 6, 6, 1, 9, 9, 4, 3, 3, 8, 9, 9, 5, 3, 3, 1, 6, 6, 1, 6, 6, 2, 9, 9, 9, 9, 9, 2, 6, 6, 7, 3, 3, 6, 6, 6, 8, 9, 9
Offset: 0

Views

Author

Keywords

Examples

			A(x) = 1 + 3*x + 3*x^2 + x^3 + 6*x^4 + 6*x^5 + 9*x^6 +...
A(x)^3 = 1 + 9*x + 36*x^2 + 84*x^3 + 144*x^4 + 252*x^5 +...
A(x)^3 (mod 27) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 +...
G(x) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 3*x^6 +...
where G(x) is the g.f. of A083949.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(d=3,m=9,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,d*n)}