cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110672 Sequence is {a(7,n)}, where a(m,n) is defined in sequence A110665.

Original entry on oeis.org

0, 1, 7, 25, 59, 98, 104, 7, -293, -926, -2064, -3945, -6897, -11349, -17829, -26964, -39498, -56328, -78540, -107426, -144482, -191408, -250132, -322858, -412114, -520775, -652061, -809537, -997143, -1219254, -1480740, -1786995, -2143935, -2557998, -3036180, -3586107, -4216107
Offset: 0

Views

Author

Leroy Quet, Aug 02 2005

Keywords

Examples

			a(0,n): 0, 1, 0, -3, -4,...
a(1,n): 0, 1, 1, -2, -6,...
a(2,n): 0, 1, 2, 0, -6,...
a(3,n): 0, 1, 3, 3, -3,...
a(4,n): 0, 1, 4, 7, 4,...
Main diagonal of array is 0, 1, 2, 3, 4,...
		

Crossrefs

Programs

  • Maple
    A11066x := proc(mmax,nmax) local a,i,j ; a := array(0..mmax,0..nmax) ; a[0,0] := 0 ; for i from 1 to nmax do a[0,i] := i-sum(binomial(2*i-k-1,i-1)*a[0,k],k=0..i-1) : od ; for j from 1 to mmax do a[j,0] := 0 ; for i from 1 to nmax do a[j,i] := a[j-1,i]+a[j,i-1] ; od ; od ; RETURN(a) ; end : nmax := 100 : m := 7: a := A11066x(m,nmax) : for n from 0 to nmax do printf("%d,",a[m,n]) ; od ; # R. J. Mathar, Sep 01 2006
  • Mathematica
    a[_, 0] = 0;
    a[0, n_] := a[0, n] = If[n < 3, {0, 1, 0}[[n+1]], (n((n-2)a[0, n-1] - (n-1)a[0, n-2]))/((n-1)(n-2))];
    a[m_, n_] := a[m, n] = a[m-1, n] + a[m, n-1];
    Table[a[7, n], {n, 0, 36}] (* Jean-François Alcover, Mar 29 2020 *)

Formula

Empirical g.f.: x*(1-2*x) / ((1-x)^7*(1-x+x^2)^2). - Colin Barker, Jul 09 2016

Extensions

More terms from R. J. Mathar, Sep 01 2006

A110666 Sequence is {a(1,n)}, where a(m,n) is defined at sequence A110665.

Original entry on oeis.org

0, 1, 1, -2, -6, -6, 0, 7, 7, -2, -12, -12, 0, 13, 13, -2, -18, -18, 0, 19, 19, -2, -24, -24, 0, 25, 25, -2, -30, -30, 0, 31, 31, -2, -36, -36, 0, 37, 37, -2, -42, -42, 0, 43, 43, -2, -48, -48, 0, 49, 49, -2, -54, -54, 0, 55, 55, -2, -60, -60, 0, 61, 61, -2, -66, -66, 0, 67, 67, -2, -72, -72, 0, 73, 73, -2, -78, -78, 0, 79, 79, -2, -84
Offset: 0

Views

Author

Leroy Quet, Aug 02 2005

Keywords

Examples

			a(0,n): 0,  1,  0, -3, -4, ...
a(1,n): 0,  1,  1, -2, -6, ...
a(2,n): 0,  1,  2,  0, -6, ...
a(3,n): 0,  1,  3,  3, -3, ...
a(4,n): 0,  1,  4,  7,  4, ...
Main diagonal of array is 0, 1, 2, 3, 4, ...
		

Crossrefs

Programs

  • Maple
    A11066x := proc(mmax,nmax) local a,i,j ; a := array(0..mmax,0..nmax) ; a[0,0] := 0 ; for i from 1 to nmax do a[0,i] := i-sum(binomial(2*i-k-1,i-1)*a[0,k],k=0..i-1) : od ; for j from 1 to mmax do a[j,0] := 0 ; for i from 1 to nmax do a[j,i] := a[j-1,i]+a[j,i-1] ; od ; od ; RETURN(a) ; end : nmax := 100 : m := 1: a := A11066x(m,nmax) : for n from 0 to nmax do printf("%d,",a[m,n]) ; od ; # R. J. Mathar, Sep 01 2006
  • Mathematica
    a[m_, 0] := 0; a[n_, n_] := n; a[0, n_] := n - Sum[Binomial[2*n - k - 1, n - 1]* a[0, k], {k, 0, n - 1}]; a[m_, n_] := a[m, n] = a[m - 1, n] + a[m, n - 1]; Table[a[1, n], {n, 0, 50}] (* G. C. Greubel, Sep 03 2017 *)

Formula

From R. J. Mathar, Oct 09 2013: (Start)
Conjecture: G.f. x*(-1+2*x) / ( (x-1)*(x^2-x+1)^2 ).
a(n) = -A010892(n-1) + A165202(n) -1. (End)

Extensions

More terms from R. J. Mathar, Sep 01 2006

A110669 Sequence is {a(4,n)}, where a(m,n) is defined at sequence A110665.

Original entry on oeis.org

0, 1, 4, 7, 4, -11, -38, -70, -100, -130, -172, -238, -328, -429, -528, -627, -744, -897, -1086, -1292, -1496, -1700, -1928, -2204, -2528, -2875, -3220, -3565, -3940, -4375, -4870, -5394, -5916, -6438, -6996, -7626, -8328, -9065, -9800, -10535, -11312, -12173, -13118, -14104, -15088, -16072, -17104
Offset: 0

Views

Author

Leroy Quet, Aug 02 2005

Keywords

Examples

			a(0,n): 0, 1, 0, -3, -4,...
a(1,n): 0, 1, 1, -2, -6,...
a(2,n): 0, 1, 2, 0, -6,...
a(3,n): 0, 1, 3, 3, -3,...
a(4,n): 0, 1, 4, 7, 4,...
Main diagonal of array is 0, 1, 2, 3, 4,...
		

Crossrefs

Programs

  • Maple
    A11066x := proc(mmax,nmax) local a,i,j ; a := array(0..mmax,0..nmax) ; a[0,0] := 0 ; for i from 1 to nmax do a[0,i] := i-sum(binomial(2*i-k-1,i-1)*a[0,k],k=0..i-1) : od ; for j from 1 to mmax do a[j,0] := 0 ; for i from 1 to nmax do a[j,i] := a[j-1,i]+a[j,i-1] ; od ; od ; RETURN(a) ; end : nmax := 100 : m := 4: a := A11066x(m,nmax) : for n from 0 to nmax do printf("%d,",a[m,n]) ; od ; # R. J. Mathar, Sep 01 2006
  • Mathematica
    a[_, 0] = 0;
    a[0, n_] := a[0, n] = If[n < 3, {0, 1, 0}[[n+1]], (n((n-2) a[0, n-1] - (n-1)a[0, n-2]))/((n-1)(n-2))];
    a[m_, n_] := a[m, n] = a[m-1, n] + a[m, n-1];
    Table[a[4, n], {n, 0, 46}] (* Jean-François Alcover, Mar 29 2020 *)

Formula

Empirical g.f.: -x*(2*x-1) / ((x-1)^4*(x^2-x+1)^2). - Colin Barker, Jul 02 2014

Extensions

More terms from R. J. Mathar, Sep 01 2006

A110671 Sequence is {a(6,n)}, where a(m,n) is defined at sequence A110665.

Original entry on oeis.org

0, 1, 6, 18, 34, 39, 6, -97, -300, -633, -1138, -1881, -2952, -4452, -6480, -9135, -12534, -16830, -22212, -28886, -37056, -46926, -58724, -72726, -89256, -108661, -131286, -157476, -187606, -222111, -261486, -306255, -356940, -414063, -478182, -549927, -630000, -719138, -818076
Offset: 0

Views

Author

Leroy Quet, Aug 02 2005

Keywords

Examples

			a(0,n): 0, 1, 0, -3, -4,...
a(1,n): 0, 1, 1, -2, -6,...
a(2,n): 0, 1, 2, 0, -6,...
a(3,n): 0, 1, 3, 3, -3,...
a(4,n): 0, 1, 4, 7, 4,...
Main diagonal of array is 0, 1, 2, 3, 4,...
		

Crossrefs

Programs

  • Maple
    A11066x := proc(mmax,nmax) local a,i,j ; a := array(0..mmax,0..nmax) ; a[0,0] := 0 ; for i from 1 to nmax do a[0,i] := i-sum(binomial(2*i-k-1,i-1)*a[0,k],k=0..i-1) : od ; for j from 1 to mmax do a[j,0] := 0 ; for i from 1 to nmax do a[j,i] := a[j-1,i]+a[j,i-1] ; od ; od ; RETURN(a) ; end : nmax := 100 : m := 6: a := A11066x(m,nmax) : for n from 0 to nmax do printf("%d,",a[m,n]) ; od ; # R. J. Mathar, Sep 01 2006
  • Mathematica
    a[_, 0] = 0;
    a[0, n_] := a[0, n] = If[n < 3, {0, 1, 0}[[n+1]], (n((n-2)a[0, n-1] - (n-1)a[0, n-2]))/((n-1)(n-2))];
    a[m_, n_] := a[m, n] = a[m-1, n] + a[m, n-1];
    Table[a[6, n], {n, 0, 38}] (* Jean-François Alcover, Mar 29 2020 *)

Formula

Empirical g.f.: -x*(2*x-1) / ((x-1)^6*(x^2-x+1)^2). - Colin Barker, Jul 02 2014

Extensions

More terms from R. J. Mathar, Sep 01 2006
Showing 1-4 of 4 results.