cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110703 Numbers S with two neighboring run sums (sum of positive integer runs) S = a+(a+1)+..+b=(b+1)+(b+2)...+c, 0

Original entry on oeis.org

3, 15, 27, 30, 42, 75, 90, 105, 135, 147, 165, 243, 252, 270, 273, 315, 363, 375, 378, 420, 462, 495, 507, 612, 660, 675, 693, 735, 750, 780, 810, 855, 858, 867, 945, 1050, 1083, 1155, 1170, 1215, 1287, 1323, 1365, 1470, 1485, 1518, 1587, 1785, 1815, 1875, 1950
Offset: 1

Views

Author

Ron Knott, Aug 04 2005

Keywords

Comments

In other words, numbers n such that a list of consecutive numbers can be split into two parts in which their sums both equal n. - A. D. Skovgaard, May 22 2017
If the two runs overlap in one number, the runs are Friends and their sums are A110701. The sums are the difference of two triangular numbers A000217.
The subsequence where there is more than one possible splitting begins 105, 945, 1365, 2457, 2625, 3990, 5145, 8505, ... - Jean-François Alcover, May 22 2017
a(n) seems to always be divisible by 3.- A. D. Skovgaard, May 22 2017. This is true. Sequence lists values of n = t(t+1)/2 - k(k+1)/2 = m(m+1)/2 - t(t+1)/2 with k < t < m. Since any triangular number must be of the form 3w or 3w+1, then there are two possibilities for n = 3w - k(k+1)/2 = m(m+1)/2 - 3w or n = 3w + 1 - k(k+1)/2 = m(m+1)/2 - 3w - 1. For first case, if k(k+1)/2 = 3u+1, there is no solution for m. Similarly for second case, if k(k+1)/2 = 3u, there is no solution for m. So always n must be divisible by 3. - Altug Alkan, May 22 2017

Examples

			3 = 1+2 = 3, so 3 is a term.
15 = 4+5+6 = 7+8 so 15 is a term.
a(6) = 75 because 75 = 3+4+5+6+7+8+9+10+11+12 = 13+14+15+16+17.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], False =!= Reduce[# == Sum[k, {k, x, y}] == Sum[k, {k, y + 1, z}] && z >= y >= x > 0, {x, y, z}, Integers] &] (* Giovanni Resta, May 22 2017 *)

Extensions

Initial 3 added by A. D. Skovgaard, May 22 2017