cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110707 Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color (first and last elements considered as adjacent).

Original entry on oeis.org

6, 24, 132, 804, 5196, 34872, 240288, 1688244, 12040188, 86892384, 633162360, 4650680640, 34390540320, 255773538240, 1911730760832, 14350853162676, 108139250403804, 817629606524112, 6200696697358344, 47152195812692664
Offset: 1

Views

Author

Max Alekseyev, Aug 04 2005

Keywords

Comments

The number of linear arrangements is given by A110706 and the number of circular arrangements counted up to rotations is given by A110710.

Crossrefs

Programs

  • Mathematica
    b = Binomial; a[n_] := 2*Sum[b[n-1, k]*(b[n-1, k]*(b[2*n+1-2*k, n+1] - 3* b[2*n-1-2*k, n+1]) + b[n-1, k+1]*(b[2*n-2*k, n+1] - 3*b[2*n-2*k-2, n+1]) ), {k, 0, n/2}]; Array[a, 20] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    a(n) = 2 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*(binomial(2*n+1-2*k,n+1)-3*binomial(2*n-1-2*k,n+1)) + binomial(n-1,k+1)*(binomial(2*n-2*k,n+1)-3*binomial(2*n-2*k-2,n+1)) ))

Formula

a(n) = 2 * Sum[k=0..[n/2]] binomial(n-1, k) * ( binomial(n-1, k)*(binomial(2n+1-2k, n+1)-3*binomial(2n-1-2k, n+1)) + binomial(n-1, k+1)*(binomial(2n-2k, n+1)-3*binomial(2n-2k-2, n+1)) )
a(n) = A110706(n) - A110711(n)
a(n) = 2*A000172(n-1)+2*A000172(n) - Mark van Hoeij, Jul 14 2010
Conjecture: n^2*a(n) -3*n*(2*n-1)*a(n-1) -3*(n-1)*(5*n-12)*a(n-2) -8*(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) ~ 3^(3/2) * 2^(3*n - 1) / (Pi*n). - Vaclav Kotesovec, Nov 09 2024