cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110711 Number of linear arrangements of n blue, n red and n green items such that first and last elements have the same color but there are no adjacent items of the same color.

Original entry on oeis.org

0, 6, 42, 288, 1992, 13980, 99432, 715344, 5196336, 38056284, 280658100, 2082218160, 15528409920, 116331315360, 874985339760, 6604555554720, 50010373864416, 379760762209692, 2891169309592548, 22062102167330592
Offset: 1

Views

Author

Max Alekseyev, Aug 04 2005

Keywords

Comments

The number of linear arrangements is given by A110706 (first and last elements are not adjacent) and A110707 (first and last elements are adjacent) and the number of circular arrangements (counted up to rotations) is given by A110710.

Crossrefs

Programs

  • Maple
    ogf := 6*((x-2)*hypergeom([1/3,1/3],[1], 27*x^2/((8*x-1)*(x+1)^2)) + 2*hypergeom([1/3,1/3],[2], 27*x^2/((8*x-1)*(x+1)^2))) / ((1-2* x)*(1+x)^(2/3)*(1-8*x)^(1/3));
    series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
  • PARI
    a(n) = 6 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*binomial(2*n-1-2*k,n+1) + binomial(n-1,k+1)*binomial(2*n-2*k-2,n+1) ))

Formula

a(n) = 6 * Sum_{k=0..floor(n/2)} binomial(n-1, k) * ( binomial(n-1, k)*binomial(2n-1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k-2, n+1) ).
a(n) = A110706(n) - A110707(n).
a(n) = ((n-3)*A000172(n-1) + n*A000172(n))/(n+1). - Mark van Hoeij, Jul 14 2010
Conjecture: -(n+1)*(n-2)*a(n) + (7*n^2 - 13*n + 4)*a(n-1) + 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015