A110784 Palindromes in which the digits are in nondecreasing order halfway through.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 121, 131, 141, 151, 161, 171, 181, 191, 222, 232, 242, 252, 262, 272, 282, 292, 333, 343, 353, 363, 373, 383, 393, 444, 454, 464, 474, 484, 494, 555, 565, 575, 585, 595, 666, 676, 686, 696, 777, 787, 797, 888, 898, 999, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2222
Offset: 1
Examples
After 191 the next term is 222 and not 202 or 212. Terms like 101, 202, 212, 303, 313, 323, ... are not included.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA110784 := proc(n::integer) if isA002113(n) then # use code in A002113 dgs := convert(n,base,10) ; for d from 2 to ceil(nops(dgs)/2) do if op(d,dgs) < op(d-1,dgs) then return false; end if; end do: true ; else false; end if; end proc: for n from 1 to 3000 do if isA110784(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 30 2025
-
Mathematica
A110784Q[k_] := PalindromeQ[#] && Min[Differences[#[[;;Ceiling[Length[#]/2]]]]] >= 0 & [IntegerDigits[k]]; Select[Range[2000], A110784Q] (* Paolo Xausa, Jul 31 2025 *)
Comments