A110795 Least multiple of n! that leaves a palindrome if trailing zeros are ignored.
1, 2, 6, 600, 600, 25200, 25200, 483840, 698867688960, 6988676889600, 293599799539200, 489718781798400, 48196817186918400, 4091568555865190400, 84446094349064448000, 2308054967694508032000, 4070651384548315607040000, 46671804001710040817664000, 46671804001710040817664000
Offset: 1
Examples
a(8) = 483840 = 8!*12, ignoring the trailing zero gives 48384 which is a palindrome.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..25
Crossrefs
Cf. A110796.
Programs
-
Maple
A004151 := proc(n) local a ; a := n ; while a mod 10 = 0 do a := a/10 ; end: RETURN(a); end: isA002113 := proc(n) local digs,i ; digs := convert(n,base,10) ; for i from 1 to nops(digs)/2 do if op(i,digs) <> op(-i,digs) then RETURN(false) ; fi ; od; RETURN(true) ; end: A110795 := proc(n) local nf,k ; nf := n! ; k := 1 ; while not isA002113(A004151(k*nf)) do k := k+1 ; od: RETURN(k*nf) ; end: seq(A110795(n),n=1..9) ; # R. J. Mathar, Aug 17 2007
Extensions
Corrected and extended by R. J. Mathar, Aug 17 2007
a(11)-a(13) from Donovan Johnson, Nov 15 2009
a(14)-a(16) from Donovan Johnson, Feb 01 2011
Terms a(17) onward from Max Alekseyev, Feb 06 2024