A110845 Weight enumerator of [128,64,16] Reed-Muller code RM(3,7).
1, 0, 0, 0, 94488, 0, 74078592, 3128434688, 312335197020, 18125860315136, 552366841342848, 9491208609103872, 94117043084875944, 549823502398291968, 1920604779257215744, 4051966906789380096, 5193595576952890822, 4051966906789380096, 1920604779257215744, 549823502398291968, 94117043084875944, 9491208609103872, 552366841342848, 18125860315136, 312335197020, 3128434688, 74078592, 0, 94488, 0, 0, 0, 1
Offset: 0
Examples
x^128 +94488*x^112 +74078592*x^104 +3128434688*x^100 +312335197020*x^96 +18125860315136*x^92 +552366841342848*x^88+ 9491208609103872*x^84 +94117043084875944*x^80 +549823502398291968*x^76 +1920604779257215744*x^72 +4051966906789380096*x^68 +5193595576952890822*x^64 +4051966906789380096*x^60 +1920604779257215744*x^56 +549823502398291968*x^52 +94117043084875944*x^48 +9491208609103872*x^44 +552366841342848*x^40 +18125860315136*x^36 +312335197020*x^32 +3128434688*x^28 +74078592*x^24 +94488*x^16+1. i A_i 0 1 16 94488 24 74078592 28 3128434688 32 312335197020 36 18125860315136 40 552366841342848 44 9491208609103872 48 94117043084875944 52 549823502398291968 56 1920604779257215744 60 4051966906789380096 64 5193595576952890822 68 4051966906789380096 72 1920604779257215744 76 549823502398291968 80 94117043084875944 84 9491208609103872 88 552366841342848 92 18125860315136 96 312335197020 100 3128434688 104 74078592 112 94488 128 1
References
- M. Sugino, Y. Ienaga, M. Tokura and T. Kasami, Weight distribution of (128,64) Reed-Muller code, IEEE Trans. Inform. Theory, 17 (1971), 627-628.
Links
- Masaaki Harada, E Novak, VD Tonchev, The weight distribution of the self-dual [128, 64] polarity design code, arXiv preprint arXiv:1602.04661, 2016
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- M. Terada, J. Asatani and T. Koumoto, Weight Distribution