A110875 Minimum positive integer such that length of the gap described at A109322 is exactly n (in contrast to A109322 where the gap length is >= n).
2, 16, 9, 64, 49, 872, 481, 1768, 423, 2980, 1333, 49180, 5335, 46666, 4425, 86815, 8763, 1109259, 14089, 658513, 29883, 137539, 22825, 10927365, 259843, 1667974, 46773, 7698572, 40291, 16048081, 178705, 16039804, 1135023, 132082042, 661285, 525395164
Offset: 1
Keywords
Examples
a(2)=16 because 16,17 are not contained in values of sigma(k) and 15,18 are; namely: sigma(8)=15 and sigma(10)=18, where sigma(k)=sum of all positive divisors of k.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..49
- Art of Problem Solving, Gaps in {sigma(n)}...
Programs
-
PARI
oksuccs(v, vi, n) = {for (i = 1, n-1, if (! vecsearch(v, vi+i, ) , return (0));); return(! vecsearch(v, vi-1) && !vecsearch(v, vi+n));} a(n) = {v = readvec("suntouch2.log"); for (i=1, #v, vi = v[i]; if (oksuccs(v, vi, n), return(vi)););} \\ where file read by readvec is the second column of b-file. Michel Marcus, Nov 21 2013
Comments