A110877
Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0) = 1, T(n,k) = 0 if n= 1: T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1) with x = 3.
1, 1, 1, 2, 4, 1, 6, 15, 7, 1, 21, 58, 37, 10, 1, 79, 232, 179, 68, 13, 1, 311, 954, 837, 396, 108, 16, 1, 1265, 4010, 3861, 2133, 736, 157, 19, 1, 5275, 17156, 17726, 10996, 4498, 1226, 215, 22, 1, 22431, 74469, 81330, 55212, 25716, 8391, 1893
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 4, 1; 6, 15, 7, 1; 21, 58, 37, 10, 1; 79, 232, 179, 68, 13, 1; 311, 954, 837, 396, 108, 16, 1; 1265, 4010, 3861, 2133, 736, 157, 19, 1; 5275, 17156, 17726, 10996, 4498, 1226, 215, 22, 1; 22431, 74469, 81330, 55212, 25716, 8391, 1893, 282, 25, 1; ... From _Philippe Deléham_, Nov 07 2011: (Start) Production matrix begins: 1, 1; 1, 3, 1; 0, 1, 3, 1; 0, 0, 1, 3, 1; 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 0, 0, 0, 1, 3, 1; ... (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Maple
A110877 := proc(n,k) if k > n then 0; elif n= 0 then 1; elif k = 0 then procname(n-1,0)+procname(n-1,1) ; else procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Sep 06 2013
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
Formula
Sum_{k=0..n} T(m, k)*T(n, k) = T(m+n, 0) = A033321(m+n).
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and (1,3,3,3,...) in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(3*k+1) = 5^n. - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k) = A126568(n). - Philippe Deléham, Oct 10 2007
Comments