cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A264961 Numbers that are products of two triangular numbers in more than one way.

Original entry on oeis.org

36, 45, 210, 315, 360, 630, 780, 990, 1260, 1386, 1540, 1800, 2850, 2970, 3510, 3570, 3780, 4095, 4788, 4851, 6300, 7920, 8415, 8550, 8778, 9450, 11700, 11781, 14850, 15400, 15561, 16380, 17640, 17955, 18018, 18648, 19110, 20790, 21420, 21450, 21528, 25116, 25200, 26565, 26775, 26796, 27720, 28980
Offset: 1

Views

Author

R. J. Mathar, Nov 29 2015

Keywords

Comments

One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations.

Examples

			36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105.
		

Crossrefs

Subsequence of A085780. A188630 and A110904 are subsequences of this.

Programs

  • Maple
    A264961ct := proc(n)
        local ct,d ;
        ct := 0 ;
        for d in numtheory[divisors](n) do
            if d^2 > n then
                return ct;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    ct := ct+1 ;
                end if;
            end if;
        end do:
        return ct;
    end proc:
    for n from 1 to 30000 do
        if A264961ct(n) > 1 then
            printf("%d,",n) ;
        end if;
    end do:
  • Mathematica
    lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* Michael De Vlieger, Nov 29 2015 *)
  • Python
    from _future_ import division
    mmax = 10**3
    tmax, A264961_dict = mmax*(mmax+1)//2, {}
    ti = 0
    for i in range(1,mmax+1):
        ti += i
        p = ti*i*(i-1)//2
        for j in range(i,mmax+1):
            p += ti*j
            if p <= tmax:
                A264961_dict[p] = 2 if p in A264961_dict else 1
            else:
                break
    A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # Chai Wah Wu, Nov 29 2015
Showing 1-1 of 1 results.