A110907 Number of points in the standard root system version of the D_3 (or f.c.c.) lattice having L_infinity norm n.
1, 12, 50, 108, 194, 300, 434, 588, 770, 972, 1202, 1452, 1730, 2028, 2354, 2700, 3074, 3468, 3890, 4332, 4802, 5292, 5810, 6348, 6914, 7500, 8114, 8748, 9410, 10092, 10802, 11532, 12290, 13068, 13874, 14700, 15554, 16428, 17330, 18252, 19202
Offset: 0
Examples
a(0) = 1: 000 a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
References
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.
Links
- R. J. Mathar, Point counts of D_k and some A_k and E_k integer lattices inside hypercubes arXiv:1002.3844 [math.GT], 2010.
- G. Nebe and N. J. A. Sloane, Home page for this lattice
- Index entries for sequences related to f.c.c. lattice
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1).
Programs
-
Maple
A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z,'even') then m := max( abs(x),abs(y),abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n),n=0..40) ; # R. J. Mathar, Feb 03 2010
-
Mathematica
a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)
Formula
From R. J. Mathar, Feb 03 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = 1 + (-1)^n + 12*n^2, n>0.
G.f.: 1 - 2*x*(6 + 13*x + 4*x^2 + x^3)/((1+x)*(x-1)^3). (End)
Extensions
I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see A117216), D_5, ..., E_6, E_7, E_8.
Extended by R. J. Mathar, Feb 03 2010
Removed the "conjectured" attribute from formulas - R. J. Mathar, Feb 27 2010
Comments