A110962 Fractalization of A025480, zero-based version of Kimberling's paraphrases sequence.
0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 3, 0, 0, 0, 4, 2, 2, 1, 5, 1, 1, 0, 6, 3, 3, 0, 7, 0, 0, 0, 8, 4, 4, 2, 9, 2, 2, 1, 10, 5, 5, 1, 11, 1, 1, 0, 12, 6, 6, 3, 13, 3, 3, 0, 14, 7, 7, 0, 15, 0, 0, 0, 16, 8, 8, 4, 17, 4, 4, 2, 18, 9, 9, 2, 19, 2, 2, 1, 20, 10, 10, 5, 21, 5, 5, 1, 22, 11, 11, 1, 23, 1, 1, 0, 24, 12, 12
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Clark Kimberling, Fractal sequences
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
PARI
A025480(n) = (n>>valuation(n*2+2, 2)); A110962(n) = if(!(n%2), A025480(n/2), A110962((n-1)/2)); \\ Antti Karttunen, Apr 18 2022
-
PARI
a(n) = n++; n>>=valuation(n, 2); n>>valuation(2*n+2, 2); \\ Ruud H.G. van Tol, Jun 23 2024
Formula
For even n, a(n) = A025480(n/2), for odd n, a(n) = a((n-1)/2). - Antti Karttunen, Apr 18 2022
a(2n+1) = a(4n+3) = a(n).
a(2n) = a(4n+1) = a(4n+2) = A025480(n/2).
a(4n) = a(8n+1) = a(8n+2) = n.
a(n) = A110963(1+n) - 1.
Extensions
Entry edited and more terms added by Antti Karttunen, Apr 18 2022
Comments