A110963 Fractalization of Kimberling's paraphrases sequence beginning with 1.
1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 4, 1, 1, 1, 5, 3, 3, 2, 6, 2, 2, 1, 7, 4, 4, 1, 8, 1, 1, 1, 9, 5, 5, 3, 10, 3, 3, 2, 11, 6, 6, 2, 12, 2, 2, 1, 13, 7, 7, 4, 14, 4, 4, 1, 15, 8, 8, 1, 16, 1, 1, 1, 17, 9, 9, 5, 18, 5, 5, 3, 19, 10, 10, 3, 20, 3, 3, 2, 21, 11, 11, 6, 22, 6, 6, 2, 23, 12, 12, 2, 24, 2, 2, 1, 25, 13
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Clark Kimberling, Fractal sequences.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
PARI
A003602(n) = (1+(n>>valuation(n,2)))/2; A110963(n) = if(n%2, A003602((1+n)/2), A110963(n/2)); \\ Antti Karttunen, Apr 03 2022
-
PARI
a(n) = n>>=valuation(n,2); 1+n>>valuation(2*n+2,2); \\ Ruud H.G. van Tol, Jun 23 2024
-
Python
def A110963(n): return (1+(m:=n>>(~n&n-1).bit_length())>>(m+1&-m-1).bit_length())+1 # Chai Wah Wu, Jan 04 2024
Formula
For even n, a(n) = a(n/2), for odd n, a(n) = A003602((1+n)/2). - Antti Karttunen, Apr 03 2022
For n >= 0, (Start)
a(4n+2) = a(4n+3) = A003602(1+n).
a(8n+1) = A005408(n) = 2*n + 1.
a(4n+1) = a(8n+2) = a(8n+3) = 1+n.
a(n) = A110962(n-1) + 1.
(End)
a(n) = A353367(4*n). - Antti Karttunen, Apr 20 2022
Extensions
Entry edited, starting offset corrected (from 0 to 1), and the offsets in formulas changed accordingly, and more terms added by Antti Karttunen, Apr 03 2022
Comments