A110996 Powers equal to (sum of first k primes) plus 1, for some k >= 0.
1, 441, 970225, 1464100, 194379364, 1303400915339554201
Offset: 1
Examples
1 is a term (corresponding to k=0), since it is the empty sum plus 1. - _N. J. A. Sloane_, Dec 02 2015 441 is a term since sum(primes<=59) = 440 and 441 = 21^2.
Programs
-
Maple
with(numtheory); egcd := proc(n) local L; L:=map(proc(z) z[2] end, ifactors(n)[2]); igcd(op(L)) end: s := proc(n) option remember; local p; if n=1 then [1,2] else [n,s(n-1)[2]+ithprime(n)] fi end; t := proc(n) option remember; [n,s(n)[2]+1] fi end; PW:=[]; for z to 1 do for j from 1 to 250000 do if egcd(t(j)[2])>1 then PW:=[op(PW),t(j)] fi od od; PW;
-
PARI
lista(nn) = { print1(1, ", "); s = 1; for(k=1, nn, s += prime(k); if(ispower(s) || s==1, print1(s, ", ")););} \\ Altug Alkan, Nov 29 2015
Extensions
New term 1 prepended by Altug Alkan, Nov 29 2015
a(6) from Jinyuan Wang, Aug 09 2023
Comments