A111006 Another version of Fibonacci-Pascal triangle A037027.
1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 0, 2, 3; 0, 0, 1, 5, 5; 0, 0, 0, 3, 10, 8; 0, 0, 0, 1, 9, 20, 13; 0, 0, 0, 0, 4, 22, 38, 21; 0, 0, 0, 0, 1, 14, 51, 71, 34; 0, 0, 0, 0, 0, 5, 40, 111, 130, 55; 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89; 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144;
Links
Crossrefs
Programs
-
Haskell
a111006 n k = a111006_tabl !! n !! k a111006_row n = a111006_tabl !! n a111006_tabl = map fst $ iterate (\(us, vs) -> (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us)) ([0] ++ vs))) ([1], [0,1]) -- Reinhard Zumkeller, Aug 15 2013
Formula
T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Comments