A111055 The set of primes of the form 4n+1 that is minimal in the sense of A071062.
5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 101, 109, 149, 181, 233, 277, 281, 349, 409, 433, 449, 677, 701, 709, 769, 821, 877, 881, 1669, 2221, 3001, 3121, 3169, 3221, 3301, 3833, 4969, 4993, 6469, 6833, 6949, 7121, 7477, 7949, 9001, 9049, 9221, 9649, 9833
Offset: 1
Examples
a(11)=101 since the pattern "*1*0*1*" does not occur in any previously found prime of the form 4n+1. Assuming all previous members of the list have been similarly recursively constructed, then 109 is the next prime in the list.
Links
- Walter A. Kehowski and Curtis Bright, Table of n, a(n) for n = 1..146 (first 135 terms from Walter A. Kehowski)
- Carlos Rivera, Puzzle 178. Shallit Minimal Primes Set, The Prime Puzzles & Problems Connection.
- Jeffrey Shallit, Minimal primes, J. Recreational Mathematics, vol. 30.2, pp. 113-117, 1999-2000.
Programs
-
Maple
with(StringTools); wc := proc(s) cat("*",Join(convert(s,list),"*"),"*") end; M1:=[]: wcM1:=[]: p:=1: for z from 1 to 1 do for k while p<10^11 do p:=nextprime(p); if k mod 100000 = 0 then print(k,p,evalf((time()-st)/60,4)) fi; if p mod 4 = 1 then sp:=convert(p,string); if andmap(proc(w) not(WildcardMatch(w,sp)) end, wcM1) then M1:=[op(M1),p]; wcM1:=[op(wcM1), wc(sp)]; print(p) fi fi od od;
Extensions
Shortened definition; moved some material from the examples to the comments - R. J. Mathar, May 24 2010
Comments