A111056 Minimal set of prime-strings in base 10 for primes of the form 4n+3 in the sense of A071062.
3, 7, 11, 19, 59, 251, 491, 499, 691, 991, 2099, 2699, 2999, 4051, 4451, 4651, 5051, 5651, 5851, 6299, 6451, 6551, 6899, 8291, 8699, 8951, 8999, 9551, 9851, 22091, 22291, 66851, 80051, 80651, 84551, 85451, 86851, 88651, 92899, 98299, 98899
Offset: 1
Examples
From _Danny Rorabaugh_, Mar 26 2015: (Start) a(5) is not 23, even though 23 is the fifth prime of the form 4n+3, since 23 contains a(1)=3 as a substring. Similarly: 31 and 43 contain 3 and 47 contains a(2)=7. Thus a(5)=59. This sequence contains 2099 since 2, 0, 9, 20, 09, 99, 209, 299, and 099 are not primes of the form 4n+3. (End)
Links
- Walter A. Kehowski and Curtis Bright, Table of n, a(n) for n = 1..112 (first 103 terms from Walter A. Kehowski)
- Walter A. Kehowski, Full list of terms
- F. Morain, Primality certificate for the largest number of A111056, May 4 2015.
- Carlos Rivera, Puzzle 178. Shallit Minimal Primes Set, The Prime Puzzles & Problems Connection.
- Jeffrey Shallit, Minimal primes, J. Recreational Mathematics, vol. 30.2, pp. 113-117, 1999-2000.
Programs
-
Maple
with(StringTools); wc := proc(s) cat("*",Join(convert(s,list),"*"),"*") end; M3:=[]: wcM3:=[]: p:=1: for z from 1 to 1 do for k while p<10^11 do p:=nextprime(p); if k mod 100000 = 0 then print(k,p,evalf((time()-st)/60,4)) fi; if p mod 4 = 3 then sp:=convert(p,string); if andmap(proc(w) not(WildcardMatch(w,sp)) end, wcM3) then M3:=[op(M3),p]; wcM3:=[op(wcM3),wc(sp)]; print(p) fi fi od od; # Let it run for a couple of days.
Comments