cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111111 Number of simple permutations of degree n.

Original entry on oeis.org

1, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526, 3454434, 43286526, 583835650, 8433987582, 129941213186, 2127349165822, 36889047574274, 675548628690430, 13030733384956418, 264111424634864638, 5612437196153963522, 124789500579376435198, 2897684052921851965442
Offset: 1

Views

Author

N. J. A. Sloane, Oct 14 2005

Keywords

Comments

A permutation is simple if the only intervals that are mapped onto intervals are the singletons and [1..n].
For example, the permutation
1234567
2647513
is not simple since it maps [2..5] onto [4..7].
In other words, a permutation [1 ... n] -> [p_1 p_2 ... p_n] is simple if there is no string of consecutive numbers [i_1 ... i_k] which is mapped onto a string of consecutive numbers [p_i_1 ... p_i_k] except for the strings of length k = 1 or n.

Examples

			G.f. = x + 2*x^2 + 2*x^4 + 6*x^5 + 46*x^6 + 338*x^7 + 2926*x^8 + ...
The simple permutations of lowest degree are 1, 12, 21, 2413, 3142.
		

References

  • Corteel, Sylvie; Louchard, Guy; and Pemantle, Robin, Common intervals of permutations. in Mathematics and Computer Science. III, 3--14, Trends Math., Birkhuser, Basel, 2004.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Bridget Eileen Tenner, Interval posets of permutations, arXiv:2007.06142, Aug 2021.

Crossrefs

Programs

  • Mathematica
    nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; A111111 = -Inverse[tnk][[All, 1]] + 2*(-1)^Range[0, nmax - 1]; A111111[[2]] = 2;
    A111111 (* Jean-François Alcover, Jul 13 2016 *)
  • PARI
    simple(v)=for(i=1,#v-1, for(j=i+1,#v, my(u=vecsort(v[i..j]));if(u[#u]-u[1]==#u-1 && #u<#v, return(0)))); 1
    a(n)=sum(i=0,n!-1, simple(numtoperm(n,i))) \\ Charles R Greathouse IV, Nov 05 2013
    seq(N) = Vec(2 + 2*x^2 - 2/(1+x) - serreverse(x*Ser(vector(N, n, n!))));  \\ Gheorghe Coserea, Jan 22 2017

Formula

a(n) = -A059372(n)+2(-1)^(n+1).
a(n) ~ n!*(1-4/n)/e^2. - Jon E. Schoenfield, Aug 05 2006
a(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). Coefficients are given by A280780(n)/A280781(n).- Gheorghe Coserea, Jan 23 2017

Extensions

Incorrect statement removed by Jay Pantone, Jul 16 2014
Word "fixed" removed by Franklin T. Adams-Watters, Jul 22 2014