cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111184 Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 34, 12, 1, 0, 120, 210, 110, 20, 1, 0, 720, 1452, 974, 270, 30, 1, 0, 5040, 11256, 8946, 3248, 560, 42, 1, 0, 40320, 97296, 87504, 38338, 8792, 1036, 56, 1
Offset: 0

Views

Author

Philippe Deléham and Paul D. Hanna, Oct 16 2005

Keywords

Examples

			Rows begin:
  1;
  0,     1;
  0,     2,     1;
  0,     6,     6,     1;
  0,    24,    34,    12,     1;
  0,   120,   210,   110,    20,    1;
  0,   720,  1452,   974,   270,   30,    1;
  0,  5040, 11256,  8946,  3248,  560,   42,  1;
  0, 40320, 97296, 87504, 38338, 8792, 1036, 56, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k) y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    DELTA[LinearRecurrence[{1, 1, -1}, {0, 2, 1}, 10], Mod[Range[10], 2], 10] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    {T(n,k)=local(A=1+x*y);for(i=1,n,A=1-x*deriv(log(1+x-x*y-x*A +x*O(x^n))));polcoeff(polcoeff(A,n,x),k,y)} /* Paul D. Hanna */
    
  • PARI
    {T(n, k)=local(A=1+x*y); for(i=1, n, A=(1 + x^2*A')/(1 + x - x*y - x*A +x*O(x^n))); polcoeff(polcoeff(A, n, x), k, y)} /* Paul D. Hanna */
    /* Print 10 Rows of the triangle: */
    for(n=0,10,for(k=0,n,print1(T(n,k),","));print(""))

Formula

O.g.f. satisfies: A(x,y) = (1 + x^2*A'(x,y)) / (1+x - x*y - x*A(x,y)), where A'(x,y) = d/dx A(x,y). - Paul D. Hanna, Jul 31 2011
O.g.f. satisfies: A(x,y) = 1 - x * d/dx log(1+x - x*y - x*A(x,y)). - Paul D. Hanna, Jul 30 2011
Sum_{k=0..n} T(n, k) = A003319(n+1).
Sum_{k=0..n} T(n, k)*2^(n-k) = A004208(n).
From Mikhail Kurkov, Jul 15 2025: (Start)
Conjecture 1: Sum_{k=1..n} T(n,k)*q^(k-1) = A111528(q,n) for n > 0, q >= 0.
Conjecture 2: Sum_{k=1..n} T(n,k)*(-1/q)^(k-1) = R(n,q)/q^(n-1) for n > 0, q > 0 where log(1 + x + q*x*[Sum_{k>=1} R(k,q)*x^k]) = Sum_{k>=1} R(k,q)/k*x^k.
Conjecture 3: n-th row polynomial is x*v_n for n > 0 where we start with vector v of fixed length m with elements v_i = 1, and for i=1..m-1, j=i+1..m apply A := v_i (at the beginning of each cycle for i) and also apply A := A + v_j, v_j := (j-i+x-1)*v_j + A.
Here last conjecture provides fast and simple algorithm, that allow to compute sums in the previous conjectures by substituting x = q and x = -1/q respectively. (End)