cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111219 d_9(n), tau_9(n), number of ordered factorizations of n as n = rstuvwxyz (9-factorizations).

Original entry on oeis.org

1, 9, 9, 45, 9, 81, 9, 165, 45, 81, 9, 405, 9, 81, 81, 495, 9, 405, 9, 405, 81, 81, 9, 1485, 45, 81, 165, 405, 9, 729, 9, 1287, 81, 81, 81, 2025, 9, 81, 81, 1485, 9, 729, 9, 405, 405, 81, 9, 4455, 45, 405, 81, 405, 9, 1485, 81, 1485, 81, 81, 9, 3645, 9, 81, 405, 3003, 81
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=9 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 9], {n, 65}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 9], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,x,numdiv(x)))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+8, 8)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_8(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+8,8). - Amiram Eldar, Sep 13 2020