A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).
4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1
Keywords
Examples
From _Gus Wiseman_, May 04 2021: (Start) The sequence of trees (starting with 1) begins: 1: o 4: (oo) 14: (o(oo)) 49: ((oo)(oo)) 86: (o(o(oo))) 301: ((oo)(o(oo))) 454: (o((oo)(oo))) 886: (o(o(o(oo)))) 1589: ((oo)((oo)(oo))) 1849: ((o(oo))(o(oo))) 3101: ((oo)(o(o(oo)))) 3986: (o((oo)(o(oo)))) 6418: (o(o((oo)(oo)))) 9761: ((o(oo))((oo)(oo))) (End)
Links
- Kevin Ryde, Table of n, a(n) for n = 1..5000 (terms 1..186 from Charles R Greathouse IV)
- Keith Briggs, Matula numbers and rooted trees
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Kevin Ryde, PARI/GP Code
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Mathematica
nn=20000; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]]; Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
-
PARI
i(n)=n==2 || is(primepi(n)) is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
-
PARI
list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
-
PARI
\\ Also see links.
Formula
The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node
Extensions
Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013
Comments