A111305 Composite numbers k such that a^(k-1) == 1 (mod k) only when a == 1 (mod k).
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 54, 56, 58, 60, 62, 64, 68, 72, 74, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 114, 116, 118, 120, 122, 126, 128, 132, 134, 136, 138, 140, 142, 144
Offset: 1
Keywords
Examples
10 is a term because 3^9 == 3 (mod 10), 7^9 == 7 (mod 10), 9^9 == 9 (mod 10).
Links
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
Programs
-
Mathematica
Select[Range[4, 144],Count[Table[PowerMod[b, # - 1, #], {b, 1, # - 1}], 1] == 1 &] (* Geoffrey Critzer, Apr 11 2015 *)
-
PARI
is(n)=for(a=2,n-1, if(Mod(a,n)^(n-1)==1, return(0))); !isprime(n) \\ Charles R Greathouse IV, Dec 22 2016
Extensions
Edited by Don Reble, May 16 2006
Comments