A076167 Primes p such that sum of even digits of p equals sum of odd digits of p.
211, 431, 853, 1021, 1087, 1201, 1223, 1289, 1447, 1627, 2011, 2213, 2617, 2671, 2819, 2837, 3041, 3221, 3467, 4013, 4637, 4673, 4691, 5443, 5623, 5689, 5869, 6217, 6271, 6473, 6491, 7283, 7621, 7643, 7687, 7823, 7867, 8017, 8053, 8219, 8237, 8273
Offset: 1
Examples
2671 is OK because 2+6=7+1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local Lo,Le; Lo,Le:= selectremove(type,convert(n,base,10),odd); abs(convert(Lo,`+`)-convert(Le,`+`)) end proc: select(t -> f(t) = 0, [seq(ithprime(i),i=1..10000)]); # Robert Israel, Nov 13 2024
-
Mathematica
soeQ[n_]:=2*Total[Select[(x=IntegerDigits[n]),OddQ[#]&]]==Total[x]; Select[Prime[Range[1050]],soeQ[#]&] (* Jayanta Basu, May 23 2013 *) Cases[{Total@# &/@GatherBy[IntegerDigits@#,OddQ], #}&/@ Prime@Range@3000, {{x_, x_}, y_} :> y] (* Hans Rudolf Widmer, Jul 26 2024 *)
Comments