A111366 Numbers such that the sum of the digits of floor(phi^n) is also the sum of the digits of the n-th Fibonacci number (in base 10), where phi is the golden ratio.
1, 6, 13, 61, 73, 92, 97, 198, 212, 217, 222, 270, 349, 380, 404, 438, 524, 630, 649, 836, 937, 1446, 1477, 1513, 1532, 1729, 2005, 2046, 2060, 2077, 2209, 2348, 2660, 2862, 2934, 3265, 3649, 3889, 4093, 4609, 4686, 4945, 5180, 5444, 5497, 5749, 5929, 6102
Offset: 1
Examples
trunc(phi^6) = 17, the 6th Fibonacci number is 8; the sum of their digits is the same, thus 6 is in the sequence.
Programs
-
Mathematica
$MaxExtraPrecision = 10^9; fQ[n_] := Plus @@ IntegerDigits@Floor@(GoldenRatio^n) == Plus @@ IntegerDigits@Fibonacci@n; Select[ Range[6108], fQ[ # ] &] (* Robert G. Wilson v *)
Extensions
Edited, corrected and extended by Robert G. Wilson v, Nov 16 2005
Comments