cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A135135 Numbers n such that A111426(n) is even.

Original entry on oeis.org

1, 3, 4, 8, 9, 12, 15, 17, 20, 21, 23, 26, 30, 33, 35, 38, 40, 44, 45, 46, 49, 53, 55, 58, 61, 63, 66, 68, 70, 73, 77, 81, 84, 86, 88, 90, 92, 94, 96, 97, 100, 102, 106, 108, 110, 112, 116, 118, 121, 123, 126, 129, 131, 134, 136, 140, 142, 144, 146, 150, 154, 156, 158
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 12 2008

Keywords

Crossrefs

Extensions

Most of the existing 16 entries replaced and sequence extended by R. J. Mathar, Jun 28 2010

A135170 Primes equal to a sum c1+c2 of two consecutive composite numbers such that lpf(c1)-spf(c1)+lpf(c2)-spf(c2) from their largest and smallest prime factors is prime.

Original entry on oeis.org

19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 101, 109, 131, 149, 151, 173, 197, 199, 233, 239, 241, 251, 269, 271, 283, 307, 311, 317, 331, 337, 349, 367, 401, 419, 439, 449, 461, 487, 491, 499, 509, 521, 593, 599, 617, 641, 647, 683, 691, 727, 739, 751, 769, 809
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 14 2008

Keywords

Crossrefs

Cf. A111426.

Programs

  • Maple
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end:
    isA060254 := proc(n) local i,sComp ; if isprime(n) then for i from 1 do sComp := A002808(i)+A002808(i+1) ; if sComp = n then RETURN(i); elif sComp > n then RETURN(-1) ; fi ; od: else -1 ; fi ; end:
    A046665 := proc(n) local a,ifs ; a := 0 ; ifs := seq(op(1, i),i=ifactors(n)[2]) ; max(ifs)-min(ifs) ; end:
    A111426 := proc(n) A046665(A002808(n)) ; end:
    isA135170 := proc(p) local i ; i := isA060254(p) ; if i > 0 then A111426(i) + A111426(i+1) ; isprime(%) ; else false ; fi ; end:
    for n from 1 to 300 do p := ithprime(n) ; if isA135170(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Feb 19 2008

Formula

{A060254(j): A002808(i)+A002808(i+1)=A060254(j) and A111426(i)+A111426(i+1) in A000040}. Subsequence of A060254. - R. J. Mathar, Feb 19 2008

Extensions

Corrected and extended by R. J. Mathar, Feb 19 2008
More precise definition by R. J. Mathar, Sep 17 2009

A161670 Sum of largest prime factor of composite(k) for k from smallest prime factor of composite(n) to largest prime factor of composite(n).

Original entry on oeis.org

3, 5, 3, 2, 13, 5, 23, 10, 3, 5, 13, 20, 38, 5, 5, 56, 2, 23, 13, 3, 35, 80, 15, 5, 92, 53, 13, 23, 38, 10, 129, 5, 7, 13, 77, 56, 5, 30, 23, 89, 187, 13, 215, 20, 3, 48, 38, 80, 126, 23, 5, 263, 10, 92, 22, 56, 13, 2, 329, 23, 72, 365, 184, 38, 13, 40, 129, 212, 398, 84, 5, 23, 35
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 16 2009, Jun 18 2009

Keywords

Comments

"composite(n)" stands for "n-th composite number", so composite(1) to composite(8) are 4, 6, 8, 9, 10, 12, 14, 15.

Examples

			composite(1) = 4; (smallest prime factor of 4) = (largest prime factor of 4) = 2. composite(2) = 6, (largest prime factor of 6) = 3. Hence a(1) = 3.
composite(5) = 10; (smallest prime factor of 10) = 2, (largest prime factor of 10) = 5. composite(2) to composite(5) are 6, 8, 9, 10, largest prime factors are 3, 2, 3, 5. Hence a(5) = 3+2+3+5 = 13.
composite(7) = 14; (smallest prime factor of 14) = 2, (largest prime factor of 14) = 7. composite(2) to composite(7) are 6, 8, 9, 10, 12, 14, largest prime factors are 3, 2, 3, 5, 3, 7. Hence a(5) = 3+2+3+5+3+7 = 23.
		

Crossrefs

Cf. A002808 (composite numbers), A111426 (difference between largest and smallest prime factor of composite(n)).

Programs

  • Magma
    Composites:=[ j: j in [4..100] | not IsPrime(j) ];
    [ &+[ E[ #E] where E is PrimeDivisors(Composites[k]): k in [D[1]..D[ #D]] where D is PrimeDivisors(Composites[n]) ]: n in [1..73] ]; // Klaus Brockhaus, Jun 25 2009

Extensions

Edited, corrected (a(39)=33 replaced by 23, a(40)=84 replaced by 89) and extended by Klaus Brockhaus, Jun 25 2009
Showing 1-3 of 3 results.