A111466 a(1) = 1, a(n+1) = a(n) - F(n+1), if F(n+1) <= a(n), else a(n+1) = a(n) + F(n+1). F(n) is the n-th Fibonacci number (A000045).
1, 0, 2, 5, 0, 8, 21, 0, 34, 89, 0, 144, 377, 0, 610, 1597, 0, 2584, 6765, 0, 10946, 28657, 0, 46368, 121393, 0, 196418, 514229, 0, 832040, 2178309, 0, 3524578, 9227465, 0, 14930352, 39088169, 0, 63245986, 165580141, 0, 267914296, 701408733, 0, 1134903170
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,1).
Programs
-
Maple
with(combinat): a[1]:=1: for n from 1 to 50 do if fibonacci(n+1)<=a[n] then a[n+1]:=a[n]-fibonacci(n+1) else a[n+1]:=a[n]+fibonacci(n+1) fi od: seq(a[n],n=1..51); # Emeric Deutsch, Aug 11 2005
-
Mathematica
nxt[{n_,a_}]:=Module[{fib=Fibonacci[n+1]},{n+1,If[fib<=a,a-fib,a+fib]}]; Transpose[NestList[nxt,{1,1},50]][[2]] (* Harvey P. Dale, Nov 21 2012 *)
Formula
a(3n+2) =0, a(3n) = F(3n), a(3n+1) = F(3n+2).
G.f.: -x*(1+2*x^2+x^3) / ( (x^2+x-1)*(x^4-x^3+2*x^2+x+1) ). - R. J. Mathar, Jun 23 2014
Extensions
More terms from Emeric Deutsch, Aug 11 2005