A111540 Matrix inverse of triangle A111536.
1, -1, 1, -2, -2, 1, -8, -2, -3, 1, -44, -8, -2, -4, 1, -296, -44, -8, -2, -5, 1, -2312, -296, -44, -8, -2, -6, 1, -20384, -2312, -296, -44, -8, -2, -7, 1, -199376, -20384, -2312, -296, -44, -8, -2, -8, 1, -2138336, -199376, -20384, -2312, -296, -44, -8, -2, -9, 1, -24936416, -2138336, -199376, -20384, -2312, -296
Offset: 0
Examples
Triangle begins: 1; -1,1; -2,-2,1; -8,-2,-3,1; -44,-8,-2,-4,1; -296,-44,-8,-2,-5,1; -2312,-296,-44,-8,-2,-6,1; -20384,-2312,-296,-44,-8,-2,-7,1; -199376,-20384,-2312,-296,-44,-8,-2,-8,1; ... After initial terms, all columns are equal to -A111537.
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, n)=1 and T(n+1, n)=n+1, else T(n+k+1, k) = -A111537(k) for k>=1.
Comments