A111548 Matrix inverse of triangle A111544.
1, -1, 1, -3, -2, 1, -15, -3, -3, 1, -99, -15, -3, -4, 1, -783, -99, -15, -3, -5, 1, -7083, -783, -99, -15, -3, -6, 1, -71415, -7083, -783, -99, -15, -3, -7, 1, -789939, -71415, -7083, -783, -99, -15, -3, -8, 1, -9485343, -789939, -71415, -7083, -783, -99, -15, -3, -9, 1, -122721723, -9485343, -789939, -71415
Offset: 0
Examples
Triangle begins: 1; -1,1; -3,-2,1; -15,-3,-3,1; -99,-15,-3,-4,1; -783,-99,-15,-3,-5,1; -7083,-783,-99,-15,-3,-6,1; -71415,-7083,-783,-99,-15,-3,-7,1; -789939,-71415,-7083,-783,-99,-15,-3,-8,1; ...
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, n)=1 and T(n+1, n)=-n-1, else T(n+k+1, k) = -A111546(k) for k>=1.
Comments