cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111577 Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

In triangles of analogs to Stirling numbers of the second kind, the multipliers of T(n-1,k) in the recurrence are terms in arithmetic sequences: in Pascal's triangle A007318, the multiplier = 1. In triangle A008277, the Stirling numbers of the second kind, the multipliers are in the set (1,2,3...). For this sequence here, the multipliers are from A016777.
Riordan array [exp(x), (exp(3x)-1)/3]. - Paul Barry, Nov 26 2008
From Peter Bala, Jan 27 2015: (Start)
Working with an offset of 0, this is the triangle of connection constants between the polynomial basis sequences {x^n}, n>=0 and {n!*3^n*binomial((x - 1)/3,n)}, n>=0. An example is given below.
Call this array M and let P denote Pascal's triangle A007318, then P * M = A225468, P^2 * M = A075498. Also P^(-1) * M is a shifted version of A075498.
This triangle is the particular case a = 3, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)
Named after the English scientist Francis Galton (1822-1911). - Amiram Eldar, Jun 13 2021
This is the array of (r, β)-Stirling numbers for r = 1 and β = 3. See Corcino. - Peter Bala, Feb 26 2025

Examples

			T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
  1;
  1,  1;
  1,  5,   1;
  1, 21,  12,  1;
  1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1                \     /1               \/1              \/1             \
|1   1            |     |1   1           ||0  1           ||0  1          |
|1   5    1       |  =  |1   4   1       ||0  1   1       ||0  0  1       | ...
|1  21   12   1   |     |1  13   7   1   ||0  1   4  1    ||0  0  1  1    |
|1  85  105  22  1|     |1  44  34  10  1||0  1  13  7  1 ||0  0  1  4  1 |
|...              |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
		

Crossrefs

Programs

  • Maple
    A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
    seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
  • Mathematica
    T[, 1] = 1; T[n, n_] = 1;
    T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)

Formula

T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k).
E.g.f.: exp(x)*exp((y/3)*(exp(3x)-1)). - Paul Barry, Nov 26 2008
Let f(x) = exp(1/3*exp(3*x) + x). Then, with an offset of 0, the row polynomials R(n,x) are given by R(n,exp(3*x)) = 1/f(x)*(d/dx)^n(f(x)). Similar formulas hold for A008277, A039755, A105794, A143494 and A154537. - Peter Bala, Mar 01 2012
T(n, k) = 1/(3^k*k!)*Sum_{j=0..k}((-1)^(k-j)*binomial(k,j)*(3*j+1)^n). - Peter Luschny, May 20 2013
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = Sum_{i = 0..n-1} 3^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
O.g.f. for n-th diagonal: exp(-x/3)*Sum_{k >= 0} (3*k + 1)^(k+n-1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k (with offset 0): 1/( (1 - x)*(1 - 4*x)*...*(1 - (3*k + 1)*x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Aug 22 2009