A111577 Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1
Examples
T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105. The triangle starts in row n = 1 as: 1; 1, 1; 1, 5, 1; 1, 21, 12, 1; 1, 85, 105, 22, 1; Connection constants: Row 4: [1, 21, 12, 1] so x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015 From _Peter Bala_, Feb 26 2025: (Start) The array factorizes as /1 \ /1 \/1 \/1 \ |1 1 | |1 1 ||0 1 ||0 1 | |1 5 1 | = |1 4 1 ||0 1 1 ||0 0 1 | ... |1 21 12 1 | |1 13 7 1 ||0 1 4 1 ||0 0 1 1 | |1 85 105 22 1| |1 44 34 10 1||0 1 13 7 1 ||0 0 1 4 1 | |... | |... ||... ||... | where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
Links
- Peter Bala, A 3 parameter family of generalized Stirling numbers, 2015.
- Peter Bala, Factorising (r,b)-Stirling arrays
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [_Paul Barry_, Nov 26 2008]
Programs
-
Maple
A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end: seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
-
Mathematica
T[, 1] = 1; T[n, n_] = 1; T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
Formula
T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k).
E.g.f.: exp(x)*exp((y/3)*(exp(3x)-1)). - Paul Barry, Nov 26 2008
Let f(x) = exp(1/3*exp(3*x) + x). Then, with an offset of 0, the row polynomials R(n,x) are given by R(n,exp(3*x)) = 1/f(x)*(d/dx)^n(f(x)). Similar formulas hold for A008277, A039755, A105794, A143494 and A154537. - Peter Bala, Mar 01 2012
T(n, k) = 1/(3^k*k!)*Sum_{j=0..k}((-1)^(k-j)*binomial(k,j)*(3*j+1)^n). - Peter Luschny, May 20 2013
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = Sum_{i = 0..n-1} 3^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
O.g.f. for n-th diagonal: exp(-x/3)*Sum_{k >= 0} (3*k + 1)^(k+n-1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k (with offset 0): 1/( (1 - x)*(1 - 4*x)*...*(1 - (3*k + 1)*x) ). (End)
Extensions
Edited and extended by R. J. Mathar, Aug 22 2009
Comments