cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111578 Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510
Offset: 1

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

From Peter Bala, Jan 27 2015: (Start)
Working with an offset of 0, this is the exponential Riordan array [exp(z), (exp(4*z) - 1)/4].
This is the triangle of connection constants between the polynomial basis sequences {x^n}n>=0 and { n!*4^n * binomial((x - 1)/4,n) }n>=0. An example is given below.
Call this array M and let P denote Pascal's triangle A007318 then P^2 * M = A225469; P^(-1) * M is a shifted version of A075499.
This triangle is the particular case a = 4, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)

Examples

			The triangle starts in row n=1 as:
  1;
  1,1;
  1,6,1;
  1,31,15,1;
  1,156,166,28,1;
Connection constants: Row 4: [1, 31, 15, 1] so
x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - _Peter Bala_, Jan 27 2015
		

Crossrefs

Cf. A111577, A008277, A039755, A016234 (3rd column).

Programs

  • Mathematica
    T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Peter Bala *)
  • Python
    def A096038(n,m):
        if n < 1 or m < 1 or m > n:
            return 0
        elif n <=2:
            return 1
        else:
            return A096038(n-1,m-1)+(4*m-3)*A096038(n-1,m)
    print( [A096038(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

From Peter Bala, Jan 27 2015: (Start)
The following formulas assume an offset of 0.
T(n,k) = 1/(4^k*k!)*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*(4*j + 1)^n.
T(n,k) = sum {i = 0..n-1} 4^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
E.g.f.: exp(z)*exp(x/4*(exp(4*z) - 1)) = 1 + (1 + x)*z + (1 + 6*x + x^2)*z^2/2! + ....
O.g.f. for n-th diagonal: exp(-x/4)*sum {k >= 0} (4*k + 1)^(k + n - 1)*((x/4*exp(-x))^k)/k!.
O.g.f. column k: 1/( (1 - x)*(1 - 5*x)*...*(1 - (4*k + 1)*x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 11 2009