cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111579 Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 15, 6, 2, 1, 1, 32, 52, 24, 7, 2, 1, 1, 64, 203, 116, 35, 8, 2, 1, 1, 128, 877, 648, 214, 48, 9, 2, 1, 1, 256, 4140, 4088, 1523, 352, 63, 10, 2, 1, 1, 512, 21147, 28640, 12349, 3008, 536, 80, 11, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

Triangles of generalized Stirling numbers of the second kind may be defined by recurrences T(n,k) = T(n-1,k-1) + Q*T(n-1,k) initialized by T(0,0)=T(1,0)=T(1,1)=1. Q=1 generates Pascal's triangle A007318,
Q=k+1 generates A008277, Q=2k+1 generates A039755, Q=3k+1 generates A111577, Q=4k+1 generates A111578, Q=5k+1 generates A166973.
(These definitions assume row and column enumeration 0<=n, 0<=k<=n.)
Each of these triangles characterized by Q=(c-1)*k+1 has row sums sum_{k=0..n} T(n,k), which define the column A(.,c).

Crossrefs

Programs

  • Maple
    T := proc(n,k,c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1,c)+((c-1)*k+1)*procname(n-1,k,c) ; fi; end:
    A111579 := proc(r,c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n,k,c),k=0..n) ; end if; end:
    seq(seq(A111579(r,c),c=0..r),r=0..10) ; # R. J. Mathar, Oct 30 2009
  • Mathematica
    T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];
    A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];
    Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)

Formula

A(r=n+c,c) = sum_{k=0..n} T(n,k,c), 0<=c<=r where T(n,k,c) = T(n-1,k-1,c) + ((c-1)*k+1)*T(n-1,k,c).
A(r,0) = 1.
A(r,1) = 2^(r-1).
A(r,2) = A000110(r-1).
A(r,3) = A007405(r-3).

Extensions

Edited by R. J. Mathar, Oct 30 2009