A111588 Crazy Dice: number of ways to design a pair of n-sided dice with positive integers on their faces, so that the sums when they are tossed occur with the same probabilities as if a pair of standard n-sided dice were tossed.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 8, 1, 2, 2, 10, 1, 8, 1, 8, 2, 2, 1, 33, 2, 2, 4, 8, 1, 13, 1, 26, 2, 2, 2, 57, 1, 2, 2, 33, 1, 13, 1, 8, 8, 2, 1, 140, 2, 8, 2, 8, 1, 33, 2, 33, 2, 2, 1, 125, 1, 2, 8, 71, 2, 13, 1, 8, 2, 13, 1, 348, 1, 2, 8, 8, 2, 13, 1, 140, 10, 2, 1, 122, 2, 2, 2, 33, 1, 118, 2
Offset: 1
Keywords
Examples
The first nontrivial example is for n=4: {1,2,2,3} and {1,3,3,5} together have the same sum probabilities as a pair of {1,2,3,4}. That is, (x + 2x^2 + x^3)(x + 2x^3 + x^5)=(x + x^2 + x^3 + x^4)^2.
References
- M. Gardner, "Penrose Tiles to Trapdoor Ciphers", p. 266.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..239
- Donald J. Newman, A Problem Seminar, Springer; see Problem #88.
Crossrefs
Cf. A033833.
Programs
-
PARI
ok(p,e,n)=my(v=Vec(factorback(p,e))); vecmin(v)>=0 && vecsum(v)==n a(n)=if(n<4, return(1)); my(x='x,f=factor((x^n-1)/(x-1)),p=f[,1],e=2*f[,2]~,u=vector(#e,i,[0,e[i]]),s,t); t=vecmax(e); for(i=1,#e, if(e[i]==t, u[i][2]\=2; break)); forvec(v=u, t=e-v; if(cmp(v,t)<=0 && ok(p,v,n) && ok(p,t,n), s++)); s \\ Charles R Greathouse IV, Jan 19 2017
Extensions
Edited and extended by Matthew Conroy, Jan 16 2006
Correction to some terms, thanks to Adam Chalcraft. - Matthew Conroy, Apr 04 2010
Comments