cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111620 a(n) = 2*A111619/n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2005

Keywords

Comments

A sequence of just 1's and 2's.
2n divided A111619 is: 2,2,2,2,1,2,1,2,2,2,2,2,1,2,1,2,2,2,1,2,1,2,1,1,1,1,2,1,2,2,2,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,1,2,2,2,1,2,..., Table[ n/g[n, n - 1], {n, 2, 144, 2}].
A111620(n) plus the n-th entry immediately above = 3.

Crossrefs

Cf. A111618.

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 144}]]; g[n_, m_] := f[n][[m]]; Table[ 3 - n/g[n, n - 1], {n, 2, 144, 2}] (* or *) Table[ 2*g[n, n - 1]/n, {n, 2, 144, 2}]

A111618 First lower diagonal of A109626.

Original entry on oeis.org

1, 3, 2, 5, 3, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 17, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 48, 49, 50, 51, 52, 53, 27, 55, 56, 57, 29, 59, 30, 61, 31, 63, 32, 65, 66, 67, 34, 69, 70, 71, 72, 73, 74
Offset: 2

Views

Author

Keywords

Comments

The odd-indexed bisection is a(2n+1)=2n+1.
The even-indexed bisection: A111619.

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 80}]]; g[n_, m_] := f[n][[m]]; Table[ g[n, n - 1], {n, 2, 74}]
Showing 1-2 of 2 results.