A111670 Array T(n,k) read by antidiagonals: the k-th column contains the first column of the k-th power of A039755.
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 24, 1, 1, 5, 28, 105, 116, 1, 1, 6, 45, 280, 929, 648, 1, 1, 7, 66, 585, 3600, 9851, 4088, 1, 1, 8, 91, 1056, 9865, 56240, 121071, 28640, 1
Offset: 1
Examples
1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 1 6 15 28 45 66 91 120 1 24 105 280 585 1056 1729 2640 1 116 929 3600 9865 22036 43001 76224 1 648 9851 56240 203565 565096 1318023 2717856 1 4088 121071 1029920 4953205 17148936 47920803 115146816 1 28640 1685585 21569600 138529105 600001696 2012844225 5644055040
Programs
-
Maple
A111670 := proc(n,k) local A,i,j ; A := Matrix(n,n) ; for i from 1 to n do for j from 1 to n do A[i,j] := A039755(i-1,j-1) ; end do: end do: LinearAlgebra[MatrixPower](A,k) ; %[n,1] ; end proc: for d from 2 to 12 do for n from 1 to d-1 do printf("%d,",A111670(n,d-n)) ; end do: end do: # R. J. Mathar, Jan 27 2023
-
Mathematica
nmax = 10; A[n_, k_] := Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); A039755 = Array[A, {nmax, nmax}, {0, 0}]; T = Table[MatrixPower[A039755, n][[All, 1]], {n, 1, nmax}] // Transpose; Table[T[[n-k+1, k]], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 02 2024 *)
Formula
Let A039755 (an analog of Stirling numbers of the second kind) be an infinite lower triangular matrix M; then the vector M^k * [1, 0, 0, 0, ...] (first column of the k-th power) is the k-th column of this array.
Extensions
Definition simplified by R. J. Mathar, Jan 27 2023