cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111791 Positive integers sorted by rote height, as measured by A109301.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 36, 5, 7, 8, 10, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 27, 28, 30, 35, 37, 39, 40, 42, 45, 46, 48, 49, 50, 52, 54, 56, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 78, 80, 81, 84, 90, 91, 92, 98, 100
Offset: 1

Views

Author

Jon Awbrey, Aug 24 2005, revised Sep 02 2005

Keywords

Examples

			Table in which the h-th row lists the positive integers of rote height h:
h | m such that rhig(m) = A109301(m) = h
--+------------------------------------------------------
0 |  1
--+------------------------------------------------------
1 |  2
--+------------------------------------------------------
2 |  3  4  6  9 12 18 36
--+------------------------------------------------------
3 |  5  7  8 10 13 14 15 16 20 21 23 24 25 26 27  28 30
  | 35 37 39 40 42 45 46 48 49 50 52 54 56 60 61  63
  | 64 65 69 70 72 74 75 78 80 81 84 90 91 92 98 100 ...
--+------------------------------------------------------
4 | 11 17 19 22 29 32 33 34 38 41 43 44 47 51 53 55
  | 57 58 66 68 71 73 76 77 82 83 85 86 87 88 89 94
  | 95 96 97 99 ...
--+------------------------------------------------------
5 | 31 59 62 67 79 93 ...
--+------------------------------------------------------
First column = A007097. Count in h^th row = A109300(h).
Cumulative count up through the h^th row = A050924(h+1).
		

Crossrefs

A111793 Triangle T(g, h) = number of rotes of weight g and height h, both in gammas.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 8, 1, 24, 32, 16
Offset: 1

Views

Author

Jon Awbrey, Aug 26 2005, revised Aug 28 2005

Keywords

Comments

T(g, h) = |{positive integers m : A062537(m) = g and A109301(m) = h}|.
Row sums = A061396. Column sums = A109300. See A111792 for details.
Main diagonal T(j, j) = 2^(j-1) for j > 0, T(0, 0) = 1.

Examples

			Table T(g, h), omitting zeros, starts out as follows:
g\h| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | 1
`1 | ` ` 1
`2 | ` ` ` ` 2
`3 | ` ` ` ` 2 ` 4
`4 | ` ` ` ` 2 `10 ` 8
`5 | ` ` ` ` 1 `24 `32 `16
		

Crossrefs

A111794 Integers whose rote weight and rote height are equal, sorted by the equated value.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 16, 11, 17, 19, 32, 53, 128, 256, 65536, 31, 59, 67, 131, 241, 719, 1619, 2048, 131072, 524288, 821641, 4294967296, 9007199254740992
Offset: 1

Views

Author

Jon Awbrey, Aug 28 2005

Keywords

Comments

The number of integers m whose rote weight, g(m) = A062537(m) and rote height, h(m) = A109301(m), are both equal to j is 2^(j-1) for j > 0 and 1 for j = 0, as enumerated by the main diagonal of the array shown with sequence A111793.

Examples

			Triangle whose j^th row lists the integers m with g(m) = h(m) = j
j | m such that g(m) = h(m) = j
--+-------------------------------------------------------
0 | 1
1 | 2
2 | 3 4
3 | 5 7 8 16
4 | 11 17 19 32 53 128 256 65536
5 | 31 59 67 131 241 719 1619 2048 131072 524288 821641
` | 4294967296 9007199254740992 2^128 2^256 2^65536
		

Crossrefs

A111799 Triangle T(h, w) = number of rotes of height h and wayage w.

Original entry on oeis.org

1, 1, 3, 4, 77
Offset: 1

Views

Author

Jon Awbrey, Sep 01 2005 - Sep 02 2005

Keywords

Comments

T(h, w) = |{positive integers m : A109301(m) = h and A001221(m) = w}|.
Let c(h) = 1 for h = 0 and A050924(h) for h > 0. In other words, c(h) is the sequence [1, A050924] = [1,1,2,9,10^9, ...] that begins with 1 and continues with the terms of A050924. Then the number of nonzero entries in row h is c(h) and their sum is A109300(h). See A111798 for definitions and further details.

Examples

			Table T(h, w), omitting zeros, begins as follows:
h\w| 0 ` 1 ` 2 ` 3 ` 4 ` 5 ` 6 ` 7 ` 8 ` 9
---+---------------------------------------
`0 | 1
`1 | ` ` 1
`2 | ` ` 3 ` 4
`3 | ` `77 ` ? ` ? ` ? ` ? ` ? ` ? ` ? ` ?
		

Crossrefs

A111795 Positive integers whose rote weight and rote height are equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 16, 17, 19, 31, 32, 53, 59, 67, 127, 128
Offset: 1

Views

Author

Jon Awbrey, Aug 28 2005

Keywords

Comments

Positive integers m such that A062537(m) = A109301(m).

Examples

			Tables of Rotes and Primal Codes for a(1) to a(9)
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` o-o ` ` o-o ` o-o ` ` ` o-o
` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` | ` ` | ` ` ` ` | `
` ` ` ` ` ` o-o ` ` o-o ` o-o ` o-o ` ` ` o-o ` o-o ` ` o-o `
` ` ` ` ` ` | ` ` ` | ` ` | ` ` | ` ` ` ` | ` ` | ` ` ` | ` `
` ` ` o-o ` o-o ` o-o ` ` o-o ` o-o ` ` o-o ` ` o-o ` o-o ` `
` ` ` | ` ` | ` ` | ` ` ` | ` ` | ` ` ` | ` ` ` | ` ` | ` ` `
O ` ` O ` ` O ` ` O ` ` ` O ` ` O ` ` ` O ` ` ` O ` ` O ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
{ } ` 1:1 ` 2:1 ` 1:2 ` ` 3:1 ` 4:1 ` ` 1:3 ` ` 5:1 ` 1:4 ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
1 ` ` 2 ` ` 3 ` ` 4 ` ` ` 5 ` ` 7 ` ` ` 8 ` ` ` 11` ` 16` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
		

Crossrefs

Showing 1-5 of 5 results.