A111846 Number of partitions of 4^n - 1 into powers of 4, also equals column 0 of triangle A111845, which shifts columns left and up under matrix 4th power.
1, 1, 4, 40, 1040, 78240, 18504256, 14463224448, 38544653734144, 357896006503348736, 11766320092785122862080, 1387031702368547767793690624, 592262859312707222259571097997312
Offset: 0
Keywords
Examples
G.f. A(x) = 1 + L(x) + L(x)*L(4*x)/2! + L(x)*L(4*x)*L(4^2*x)/3! + L(x)*L(4*x)*L(4^2*x)*L(4^3*x)/4! + ... where L(x) satisfies: x = L(x) - L(x)*L(4*x)/2! + L(x)*L(4*x)*L(4^2*x)/3! +- ... and L(x) = x + 4/2!*x^2 + 56/3!*x^3 + 1728/4!*x^4 +....(A111849).
Links
- T. D. Noe, Table of n, a(n) for n=0..35
Programs
-
PARI
{a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,1]))}
Formula
G.f.: A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{j=0..n-1} L(4^j*x) where L(x) satisfies: x = Sum_{n>=1} -(-1)^n/n!*Product_{j=0..n-1} L(4^j*x); L(x) equals the g.f. of column 0 of the matrix log of P (A111849).
Comments