A111870 Prime p with prime gap q - p of n-th record merit, where q is smallest prime larger than p and the merit of a prime gap is (q-p)/log(p).
2, 3, 7, 113, 1129, 1327, 19609, 31397, 155921, 360653, 370261, 1357201, 2010733, 17051707, 20831323, 191912783, 436273009, 2300942549, 3842610773, 4302407359, 10726904659, 25056082087, 304599508537, 461690510011, 1346294310749, 1408695493609, 1968188556461, 2614941710599, 13829048559701, 19581334192423, 218209405436543, 1693182318746371
Offset: 1
Keywords
Examples
The first few entries correspond to the following gaps. The table gives n, p, gap = q-p and the merit of the gap. 1, 2, 1, 1.4427 2, 3, 2, 1.82048 3, 7, 4, 2.05559 4, 113, 14, 2.96147 5, 1129, 22, 3.12985 6, 1327, 34, 4.72835 7, 19609, 52, 5.26116 8, 31397, 72, 6.95352 9, 155921, 86, 7.19238 10, 360653, 96, 7.50254 11, 370261, 112, 8.73501 12, 1357201, 132, 9.34782
References
- Ed Pegg, Jr., Posting to Seq Fan mailing list, Nov 23 2005
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..39, extracted from pzktupel link.
- Jens Kruse Andersen, The Top-20 Prime Gaps
- Jens Kruse Andersen, Maximal gaps
- Jens Kruse Andersen, Record prime gaps, current version maintained by Norman Luhn.
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
- Eric Weisstein's World of Mathematics, Prime Gaps
Programs
-
Mathematica
With[{s = Map[(#2 - #1)/Log[#1] & @@ # &, Partition[Prime@ Range[10^6], 2, 1]]}, Map[Prime@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Jul 19 2018 *)
Formula
Extensions
Corrected by Jose Brox, Dec 31 2005
Corrected and edited by Daniel Forgues, Oct 23 2009
Further edited by Daniel Forgues, Nov 01 2009, Nov 13 2009, Nov 24 2009
Comments